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Abstract — A survey is given of the so-called spectral-domain approach,
an analytical and numerical technique particularly suited for the solution of
boundary-value problems in microwave and millimeter-wave integrated
circuits. The mathematical formulation of the analytical part of this ap-
proach is described in a generalized notation for two- and three-dimen-
sional strip- and slot-type fields. In a similar way, the numerical part of the
technique is treated, keeping always in touch with the mathematical and
physical background, as well as with the respective microwave applications.
A discussion of different specific aspects of the approach is presented and
outlines the peculiarities of shielded-, covered-, and open-type problems,
followed by a brief review of the progress achieved in the last decade
(1975-1984). The survey closes with considerations on numerical effi-
ciency, demonstiating that spectral-domain computations can by speeded
up remarkably by analytical preprocessing. The presented material is based
on ten years of active involvement by the author in the field and reveals a
variety of contributions by West German researchers previously not known
to the international microwave community.

I. INTRODUCTION

GENERALLY SPEAKING, the term spectral-domain
approach (SDA) refers to the application of integral
transforms, such as the Fourier and Hankel transforms, to
the solution of boundary-value and initial-value problems.
As becomes obvious from the overview book and associ-
ated bibliography by Sneddon [1], this approach has been
applied to mechanical and electromagnetic problems for at
least a century. It provides an elegant tool for the reduction
of the partial differential equations of mathematical physics
to ordinary ones, which in many cases are amenable to
further analytical processing. During the last 15 years, the
spectral-domain approach has received considerably more
interest together with the growing importance of printed
circuits for very high frequencies, namely conventional and
monolithic microwave and millimeter-wave integrated cir-
cuits (MIC’s) fabricated by planar photolithographic tech-
nology. The actual and potential range of application of
this technique implies hybrid thin- and thick-film circuits,
monolithic MIC’s on gallium arsenide, planar resonators
and antennas, as well as multiconductor multilayer inter-
connections in high-speed computers. These circuits and
components typically operate at frequencies between 0.1
~and 100 GHz, and the main intention of using the ap-
proach has been the derivation of accurate, particularly
frequency-dependent, design information.
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Already by 1957, Wu [2] had considered it an “obvious
thing to do” to apply a Fourier transform in the analysis of
microstrip lines. From the end of the 1960°s on, several
authors began to implement more and more of those steps
which are characteristic for what today is denoted the
spectral-domain approach for MIC’s. Yamashita and Mittra
[3], for example, solved Poisson’s equation in the transform
domain and computed microstrip line capacitance from a
variational expression under application of parseval’s the-
orem. Denlinger [4] in the United States and Schmitt and
Sarges [5] in West Germany both derived an approximate
solution to the microstrip dispersion problem in terms of
the transformed strip current density. Itoh and Mittra [6],
on the other hand, applied a spectral-domain approach in
essentially the form it is still used today to the computation
of slotline dispersion characteristics. Two years later, the
same authors explicitly used the notation “spectral domain
approach” for the specific technique (Galerkin’s method in
the transform domain) employed in one of their microstrip
contributions [7]. Recent analyses still follow the basic
outlines of this technique and the notation has been adopted
by the microwave community.

In the initial research phase, a variety of fundamental
applications and modifications of the spectral-domain ap-
proach and related methods had been reported within a
few years. Coupled microstrip dispersion and characteristic
impedances were computed by Kowalski and Pregla [8]
and by Krage and Haddad [9]. Also, guided higher order
modes in open microstrip lines were treated by Van de
Capelle and Luypaert [10]. Itoh and Mittra [11] extended
the spectral-domain formalism to shielded microstrip lines
while Jansen [12] treated the same problem making use of a
least-square criterion instead of Galerkin’s method in the
final step of the solution. As a first application to micro-
strip discontinuity problems, Rahmat-Samii et al. per-
formed a quite general static spectral-domain analysis [13].
The first full-wave analyses of hybrid-mode microstrip
resonator problems were reported by Itoh [14] and by
Jansen [15], [16] in 1974, including rectangular, disk, ring,
and concentric coupled shapes. Along the guidelines hav-
ing emerged in this way, the spectral-domain approach has
been used extensively for the characterization and analysis
of elementary structures frequently appearing in MIC’s.
These structures can be classified as conducting thin pat-
terns in one or more interfaces of a multilayer stratified
dielectric medium. Therefore, the associated electromag-
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netic boundary-value problems lend themselves ideally to
an SDA treatment. The partial differential equations con-
sidered are mainly the wave equation or, where small
dimensions compared to wavelength prevail, the Laplace
and the Poisson equation. Specific problems frequently
tackled by the spectral domain approach are:

1) the static or frequency-dependent characterization
of printed microwave transmission lines (a two-
dimensional electromagnetic field problem).

2) the static or frequency-dependent analysis of prob-
lems concerning strip and slot transmission-line dis-
continuities, junctions and resonators, respectively
and patch antennas (three-dimensional electromag-
netic fields).

The contribution given here outlines the basic features of
the analytical formulation of the spectral-domain approach
as it applies to the above-mentioned problems. It is shown
how for printed planar structures of arbitrary connected
and disconnected shape embedded in a multilayer dielec-
tric medium a single closed-form integral equation emerges
from the application of the analytical steps of the SDA. As
a result of explicit construction of that portion of the
solution which depends on the vertical coordinate, this
integral equation comes out reduced by one dimension
compared to the original partial differential equation. From
the beginning -of the analysis, a considerable reduction in
complexity is achieved and reduces the expense for the
subsequent numerical part of the approach. This provides
one of the important arguments for the superiority of the
spectral-domain approach compared to other techniques.

In a discussion of the numerical procedure usually em-
ployed to solve the derived integral equation, the peculiari-
ties of eigenvalue-type and deterministic MIC problems are
treated briefly. There are arguments to prefer a Galerkin
solution with certain symmetry properties for the former,
while the latter do not generally result in a symmetric;
respectively, Hermitian system of equations. From the
obtained solutions, most of the quantities required in the
characterization and analysis of MIC’s can be obtained
directly in the transform domain. Only one of the methods
recently applied to MIC’s shares several of the advantages
of the SDA: the differential-difference approach (DDA),
also called the method of lines [17]. A comparison with
this, therefore, deserves a brief discussion.

After presenting these general features, the different
aspects of the spectral-domain approach are outlined which
have to be considered for shielded structures, laterally open
structures, and configurations which are completely open
electromagnetically. A specific implementation of the ap-
proach recently developed for the systematic frequency-
dependent analysis of discontinuities and junctions in
MIC’s is described. It is discussed further as to how the
radiation condition can be incorporated into the SDA
formulation by proper choice of the integration path pre-
vailing for the basic integral equation. To round out the
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Fig. 1.
MIC transmission lines and (c) generalized MIC structure together with
coordinate system used in the discussion.

(a) Microstrip line and (b) coplanar waveguide as examples for

picture given of the spectral-domain approach, the more
important results achieved by its application are sum-
marized in a subsequent section, and the state-of-the-art is
described.

The last section of the paper is a discussion of the
advantages and disadvantages of the spectral-domain ap-
proach. Emphasis is placed on the hybrid character of this
technique which requires (and allows!) a certain amount of
analytical preprocessing to achieve high efficiency. It is
shown, further, how most of the disadvantages of the
technique can be removed and to what degree, typically, a
specific class of problems can be speeded up.

Remarks on the numerical problems associated with the
development of user-oriented SDA packages are made and
critical parts of these are illuminated. Finally, the main
characteristics of the spectral-domain approach are sum-
marized in a brief conclusion.

II. MATHEMATICAL FORMULATION

Some elements of the analytical steps necessary to apply
the spectral-domain approach to specific problems, par-
ticularly the characterization of MIC transmission lines,
have already been described in overview books {18], {19].
The treatment given here generalizes the formulation as far
as possible and emphasizes those features which the differ-
ent classes of MIC problems all have in common. For a
visualization of the physical construction of the configura-
tions to be considered, Fig. 1 shows (a) an open microstrip
line, (b) a coplanar waveguide suspended above the ground
plane of a circuit environment, (c) and a quite general
shielded structure. The latter serves for the following dis-
cussion and could as well be laterally open or completely
open. It provides-an idealized view of the basic construc-
tion of MIC’s indicating that the passivé portions of these
consist mainly of a thin conductor metallization in one or
more interfaces of a double or multilayer dielectric medium;
for an overview, see [20].

In agreement with common microwave practice, the
formulation is in terms of time-harmonic electromagnetic
fields, namely, a time dependence of exp(jwt). Vector
quantities, like the electric field E, are written by single
underlining, matrices by double underlining. The involved
conductors are assumed to have ideal conductivity « and
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negligible thickness ¢. This is a very realistic assumption in
hybrid MIC’s, where strip and slot widths are usually large
compared to conductor thickness. In monolithic MIC’s on
gallium-arsenide, this is not valid with the same generality.
Here, the assumption is mainly a matter of convenience
and simplification of the treatment. The consideration of
- finite thickness in the SDA formulation can be achieved by
treating the thick metallization as a separate layer, see for
example [21]-[23]. In addition, it is convenient in most
cases to assume lossless dielectric media since this allows a
ral number arithmetic for the SDA algorithm, except for
cases where radiation or surface-wave excitation is in-
volved. Loss parameters are usually introduced by per-
turbation methods subsequent to a numerical solution
neglecting loss. This also applies to the evaluation of
conductor loss, which can be taken into account if the
asymptotic behavior of the field derived for zero metalliza-

tion thickness is appropriately modified [24]-[27]. In each '

of the layers i=1,2... L of a general configuration like
that of Fig. 1, the electromagnetic field is best formulated
in terms of scalar LSM and LSE wave potentials [28], [29].
This is equivalent to the use of vector wave potentials
having only one component in the z-direction, i.e., per-
pendicular to the stratified circuit medium. It allows a
completely decoupled and, therefore, particularly simple
analytical treatment of all classes of MIC problems
[30]-[36] independent of the number of dielectric layers
involved. This specific choice naturally leads to what Itoh
[35] has named the spectral-domain inmittance approach.
Just recently, Omar and Schiinemann [37] have shown that
only coupling of the LSE and the LSM contributions to the
electromagnetic field occurs and is required in satisfying
the edge condition with the last step of the solution. The
scalar LSM and LSE wave potentials are denoted f and g
here. They are subject to the homogeneous Helmholtz
equation

(A+k7)fi=(A+k])g, =0 (1)
in each of the layers i =1,2... L of the circuit medium,
with k; denoting the wave number associated with the ith
layer. It should be stressed that the homogeneous form of
(1) applies even in the case of excitation problems. With
the spectral-domain approach, sources are introduced in a
natural way as impressed current densities or electric fields
only into the interfaces between the layers [38]-[41]. In-
stead of considering the space-domain form of the Helm-
holtz equation (1) directly, its spectral-domain equivalent is
used. Without loss of generality, the scalar potentials may
be written in the form of inverse two-dimensional Fourier
transforms, for example,

f,(x,y,z)=fcfcf~,(kx,ky,z)

cexp(— j(kx+k,y))dxdy. (2)
For configurations of circular symmetry, the use of Hankel
transforms is an adequate choice [1},742]-[46]. In transmis-
sion-line problems, (2) is reduced by one dimension since
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these problems can be formulated in terms of the cross-sec-
tional field alone postulating a longitudinal dependency of
the form exp(— jk,y). Alternatively, for these cases, the
spectral wave potential f, may be viewed as factorized and
containing a y-dependent factor in the form of a Dirac
distribution, so that the integration in (2) reduces to one
dimension. In the high majority of SDA contributions
published, the integration paths C, and C, have been
chosen to coincide with the respective coordinate axes. The
spectral variables k, and k, may be interpreted each as a
measure of spatial oscillation of the described field which
is useful for later convergence considerations. This is im-
mediately obvious if (2) implies a finite Fourier transform
[11] and the spectral wave numbers k, and/or k, form an
infinite numerable sequence. In that case, f,(k,,,. k,,,2)
describes the Fourier series coefficients of f,(x, y, z) and
these values of k,,, k,, are chosen in such a way that the
boundary conditions on a lateral shielding parallel to the
z-axis are satisfied. Further generalizing, one may consider
such coefficients as being associated with any two suitably
chosen complete orthogonal sets of solutions of the Helm-
holtz equation which are TM and TE with respect to the
z-direction and satisfy the lateral boundary conditions [30],
[31]. At the same time, this reveals how a suitable finite
integral transform can be constructed for a given cross
section of the shielding. In addition, this generalization
makes clear that the mathematical formulation can be
discussed completely independent of the special cross sec-
tion or even the existence of a lateral shielding. The
Helmholtz operator of (1), if applied in the transform
domain, always appears as

A 2 82 2 2 2 \ 82 2

A+k,=ﬁ+k,—kx—ky=—z—2+k“ (3)
which is an ordinary differential operator. Due to the
simple layered planar construction of MIC’s, the trans-
formed wave potentials f, and g, can be determined ana-
Iytically and adopt the general form

f;(kx’ ky’ Z) =al(kx’ ky)'COS(k“(Z - Zz))
+b,(ky, ky)sin(k,,(z=2,)), i=1---L. (4)

The functions a, and b, are spectral distributions weighting,
the elementary plane-wave constituents with respect to the
z-axis. The parameter z; is arbitrary and is, for example,
introduced to allow convenient satisfaction of the boundary
conditions at the conducting ground plane and cover
shielding usually existing in MIC’s. With the relations
Jwe, B, = ksfn Jop, H, = kzgn kg = k)% + k;%

p

)

it becomes clear that homogeneous boundary conditions

“prevail for f, and g, identical to those for the transformed

field components E_, and H,,. Further, since the transform
defined by (2) affects only the x and y coordinates, all
conditions specified for the spatial electromagnetic field in
planes of constant values of z can be directly transferred
into the spectral domain. Therefore, in a configuration
involving the layers i =1,2... L, the potential 7, at the
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ground and top plane of the multilayer medium is

f:(kx,ky,z)=a,(kx, 7,)), i=1,L

(6)

if z; and z, describe the positions of the ground and cover
shielding. In complete analogy, g, is proportional to the
respective sine function for i=1 and i=L as a conse-
quence of the vanishing of H,,(x,y,z) at z=2z; and
z=z;. For vertically open structures like antennas and
open microstrip, the potentials f, and g, both have an
exponential z-dependence. The complete transformed elec-
tromagnetic field in all of the layers i =1,2... L is derived
by application of the spectral-domain equivalent v of the
V¥ operator, namely, by

k,)cos(k,,(z~

01 - -

—Ei_ jw_flv XV X(f,uz)_v X(gtuz)
ﬁi——.l—\? XV X (gu,)+v X (fu,). (7.)
= jep, -

These relations have the same form as their spatial counter-
parts [28], [29] and result by substituting the algebraic
multiplicators jk, and Jk, for the respective partial dif-
ferential operators. Together with the foregoing discussion
they show that, in a circuit medium of L layers, the
total electromagnetic field can be described by 4(L —1)
independent spectral LSM and LSE distributions
a(k,, k), b,(k,, k,). For the dielectric interfaces between
the different layers, exactly the same number of continuity
conditions can be formulated in the spectral domain, i.e.,

Ext'—ExH—l:O E~

yi - Ey1+1 = 0

H, ~H, = (8)
for i=1... L~1 and z fixed at its interface value for each
subscript i. They mirror the continuity of the electric field
E, tangential to the interfaces independent of the presence
of a thin metallization. At the same time, they describe the
discontinuity of the tangential magnetic field at such a
metallization in terms of a surface current density J,. In
interfaces which do not contain conductors, J, is defined
to be zero, enforcing the magnetic field continuity there.
By analytical processing of the relations (8), all the un-
known distributions a, and b, can be eliminated or ex-
pressed by the spectral- domam current density components
J,, and J The latter may exist in only one of the
interfaces or in several of these. In this stage of the
analysis, the only boundary conditions which remain to be
satisfied are those of the electric field E, tangential to the
conductor metallization and of the surface current density
J, to vanish in complementary regions. How the spectral-
domain relations resulting from the analytical evaluation of
(8) have to be arranged for further processing, therefore,
depends on whether the metallized interfaces can be char-
acterized as strip-type (i = ist) or slot-type (i = is/), respec-
tively. In the general case, an algebraic spectral-domain

J H Hy1+1 jxi
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equation results linking the mixed-type vectors

( Tt Exist’ Eyist e jxlsl’ jytsl e )T
and )
(”'szst’ jytst”'Extsl’ Eyisl”')T (9)

by a spectral immittance matrix; see for example [22], [35],
[47]. T denotes transposition and is used only for conve-
nience of writing. The lower one of the two vectors shown
is put onto the right side of the described algebraic relation
because its elements are better suited for expansion into
known functions. These elements are typically confined to
a small portion of the affected interfaces. For a similar
reason, the upper one of the vectors is arranged onto the
left side of the spectral-domain equation. By this, it is
described by the other vector and needs to satisfy boundary
conditions on only a small portion of its region of ex-
istence. The spectral algebraic relation between the vectors
(9) is equivalent to a single integral equation which results
by application of the transform inherent in (2). Since the
whole discussion has been performed without recourse to
particular shapes of the metallization pattern, this is true
for arbitrary planar connected and disconnected conduc-
tors. From the procedure outlined, the kernel of the in-
tegral equation is available in analytical form. Further, this
integral equation comes out reduced by one dimension
compared to the original field problem associated with (1).
It is one-dimensional for transmission-line problems and
two-dimensional for discontinuities, resonators, and so on.
As (4) shows, the z-dependency of the field is described in
analytical form. In most cases of practical interest, the
MIC configurations analyzed are either strip-type or slot-
type exclusively, with only one layer of metallization. Un-
der this presumption, the relation between the vectors (9)
reduces to the simpler form

(Exl.vt’ Eyz.vt) ! = :Z(p) (jxtst’ jylst) ’

or

(jxlSI’ jyzsl) ! =Z(p) (EXISI’ Eytsl) T' (10)

The quantity p has been introduced to remind one of the
fact that the elements of Z and ¥ depend in a known,
analytical form on physical parameters defining the con-
sidered MIC problem (for example, vertical geometry,
shielding dimensions, or operating frequency). Obviously,
the spectral immittance matrix Y is the inverse of Z if both
equations in (10) refer to the same problem and dielectric
interface. For this reason, we may also write in the space
domain

E=L.(p)d, or J=L'(p)E, (11)

where E, = (E,, Ey)T and J,=(J,, y)T are specialized to
denote electric field and current density in the plane of the
circuit metallization. The integral operators L and L}!
are linear with respect to the vectors they operate on and
both have a dyadic kernel defined by the spectral-domain
Green’s immittance matrices Z and Y. The constituents of
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this kernel can be determined in a particularly elegant way
by the so-called spectral-domain immittance approach [32],
[35]. It has been shown by the author for shielded con-
figurations that by suitable choice of an orthonormal vec-
torial function basis in (2), the kernel can be described by a
single infinite scalar set of wave impedances Z, in conjunc-
tion with the elements of the function basis [30], [31]. In
that case, the discrete impedance elements Z, are equal to
the modal input wave impedances of the cylindrical shield-
ing as seen in the plane of metallization. Independent of
these details, there is always a duality between the strip-type
and the slot-type formulation as visible in (10) and (11).
For the former, the tangential electric field E, has to
vanish on the strip metallization F,,, while for the latter,
the surface current density J, does not exist in slot regions
F,,, i.e., outside of the metallization. Splitting up the right-
hand quantities of (11) into an excited term (subscript zex)
and a source or impressed term (subscript rim) further
yields ‘
E,=0=Ly(p) (Jiex+ dim) for x, y € F,

Zrex -
—Jt= Q= Lc;l(p)'(Etex—*_.Etim) for x, Y€ F.;I' (12)

These final integral equations are written here as in the
formulation of a scattering problem {38]-[41]. They define,
at the same time, the electric field E, and current density J,
in the complementary regions F,;' and F i.e., outside of
strips and on the metallization around slots. If sources
Jym» E4im are note present, like in transmission-line and
resonator problems, the equations in (12) each define a
so-called nonstandard eigenvalue problem [48]-[50]. This
notation applies since, without sources, (12) can be solved
only for specific values of the parameter p (the eigenvalue),
which is contained in the integral equation kernels in
nonlinear, usually transcendental form. Which physical
quantity is chosen in a problem as the parameter p is to
some degree arbitrary. In transmission-line problems, the
usual choice is p =48, i.e., the propagation constant, or
p =2, the square of it. Resonator problems are conve-
niently treated in terms of p = wy, the resonance frequency,
or p =1,, a dimension of the resonator.

HI.

The standard procedure applied in most computer solu-
tions of the integral equations (12) today is Galerkin’s
method in the spectral domain, particularly for the eigen-
value problem. This is a preferable choice resulting from
the self-adjointness of the involved integral operators and
following the argumentation by Harrington [51]. The
stationarity of such solutions has been discussed in an
early contribution by the author in comparison to a
least-squares alternative [31]. It has recently been shown by
Lindell in a general context for the eigenvalue parameter p
with respect to the trial field [48]-[50] which is J,., for
strip problems and E,. for slot-type configurations. To
simplify the discussion, restriction to strip-type problems is
allowed without loss in generality. The numerical proce-
dure is best understood if the equations prevailing in the
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spectral and the space domain are considered in parallel,
i.e., writing briefly

E1=Loo(p)'(_']tex+_]tim) Et=:Z(P)'(_J:ex+_J:1;11)'
(13)

In the space domain, the physical vectors E, and J, = J, .,
+ J,;, are different from zero in the complementary re-
gions F;! and F,,. The unknown surface current density
J,ex 15 €xpanded into a suitable, preferably complete set of
expansion functions defined on F,, and vanishing outside.
By this, continuity of the magnetic field outside the
metallization is achieved at the same time. The expansion
of J,., is actually performed in the original, spatial domain
since this provides the best physical insight for a good
choice. It depends on the specific problem under investiga-
tion whether the functions J, chosen should be easily
transformable into the spectral domain or not. For the
application of Galerkin’s method, the set of testing func-
tions necessary to enforce the vanishing of E, on the
conductor region F,, is the same as the expansion used, say
J,,- The scalar product employed in the testing process is
commonly defined by integration over F,, without a specific
weighting factor and expressed here using parentheses ().
Making use of the linearity of the integral operator in-

volved, the standard process of testing [51] finally yields
N Zak(—th’Loo(p)‘L]tk)=_(—th’Loo(p)'Jtim)
k
or

g'&k(z,,g(p>-£k)=—(._f:,-,:Z<p>-_f,im). (14)

The second alternative and mathematically identical equa'—
tion applies as a consequence of Parseval’s theorem [1],
which also serves for a unique definition of the associated
scalar product (,) in the spectral domain. In eigenvalue
problems, the right-hand side of (14) vanishes and a non-
trivial solution J,., exists only if the determinant of the
respective linear system of equations is zero. This provides
the nonlinear eigenvalue equation for the unknown param-
eter p and, subsequent to an iterative evaluation of p, the
associated surface current distribution J,= J,.,. The elec-
tric field outside of the metallization is found from the
application of (13). For MIC excitation problems, (14) is
deterministic and can be solved in a single step for a
prescribed value of the parameter p. The main difficulty in
such cases is a realistic formulation of the excitation term
J,im such that it well describes the physical sttuation. Also,
the introduction of such a source term may complicate the
satisfaction of boundary conditions in its spatial vicinity as
compared to an equivalent eigenvalue formulation [36]. As
long as the source chosen has finite support in the x—y
plane, the field region is finite and the expansion functions
are chosen properly, Galerkin’s method can still be ap-
plied, for example, if the source is a slit voltage generator
or a strip current sheet [38], [39]. However, if the field is
excited by a transmission-line mode coming in from infin-
ity and a reflected wave is involved, Galerkin’s method
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cannot be applied any more since the associated scalar
products become unbounded. In that case, which is a good
description of practical MIC excitation problems, another
version of moment methods has to be employed [40], [41]
enforcing existence of the scalar products. Expansion and
test functions have to be different then with the conse-
quence that the final system of equations (14) is not
symmetric or Hermitian any longer.

It should have become obvious from the discussion that
interpreting the numerical procedure as “Galerkin’s method
in the transform domain” is too restrictive not only be-
cause of the last-mentioned details. Actually, it does not
make a mathematical difference which one of the equations
(14) is considered if the presumptions necessary for the
application of Parseval’s theorem are satisfied. As a rule of
thumb, in laterally open problems, evaluation of the scalar
products in (14) is alleviated if the spectral quantities are
used. In these cases, expansion functions should be selected
with explicitly available analytical transforms. On the other
hand, for shielded configurations, it may have advantages
to perform the scalar product operation in the spatial
domain, particularly if a suitable orthogonal set of func-
tions can be constructed for the description of the electro-
magnetic field [30], [31]. Also, it is generally easier to
construct complete sets of expansion functions for conduc-
tors of complex shape in the space domain. So, the major
advantage of the so-called spectral-domain approach is
that it allows one to shift between the space and the
transform domains in essentially all steps of the processing.
The same applies to the computation of MIC design quan-
tities from solutions obtained by the approach. Quantities
like quality factors, dielectric and magnetic loss, conductor
loss, and power transported in the cross section of trans-
mission lines can with advantage be computed in either of
the domains depending on the shielding situation and the
specific problem. The evaluation of such design data in-
volves volume or surface integration over thé products

—Ei .—Ez* —Hl .ﬂl* and El X EI*

(15)

where the asterisk denotes complex conjugate. Integration
over the vertical z-coordinate is always performed analyti-
cally due to the simple trigonometric dependencies associ-
ated with the layered MIC structure. Along the other
coordinates, Parseval’s theorem again allows a choice. Care
has to be taken in conductor loss computations for metalli-
zations of zero thickness. Because of the order of the edge
singularity of the field for conductors of vanishing thick-
ness [52], the square of the magnetic field tangential to the
metallization is not integrable. However, this can be re-
paired to achieve a good approximation of conductor loss
by proper modification of the asymptotic behavior of the
transform of the magnetic field [24], [25]. The idea behind
this is that, except for the immediate vicinity of the con-
ductor edges, the field does not change noticeably if a
small, finite thickness is introduced. The modification may
also be performed in the spatial domain if a strip-type
problem prevails for which the original current density
distribution is available in closed form. Also, longitudinal
strip current or transverse slot voltage may be evaluated in
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the space domain for the same reason. These quantities are
often used in the calculation of characteristic impedances
of strip and slot transmission lines [8], [9], [24], [34].

Similar advantageous properties as those described for
the spectral-domain approach are shared to some degree by
one of the methods recently applied to MIC’s. This is
named the differential-difference approach (DDA) here
and is also called the method of lines [17], [53]-[55]. The
fundamental similarity to the SDA formulation consists in
the fact that it reduces the original Helmholtz equation (1)
to a system of ordinary differential equations which can be
solved explicitly. In contrast to the spectral-domain ap-
proach, the reduction in complexity and presumption for
further analytical processing is achieved by discretization
of the Helmholtz operator, writing, for example,

flm—l,n _zflm,n +fim+1’n
2
h

32
(5;3+k,2)f,m’"+

m,n—1__ m,n m,n+1
+ /. 2];’12 */ =0. (16)
y
This implies a two-dimensional finite-difference represen-
tation of the field for each plane of constant coordinate z,
i.e.,, a mesh of points m,n with m=1... M n=1...N. It
describes a band-structured system of coupled ordinary
differential equations with a total number of 2MN un-
knowns for two scalar wave potentials. The system can be
decoupled, i.e., brought into diagonal form, leading to the
same number of discrete transformed potentials, say f”"
and g,™". For these, the z-dependency in the layered MIC
structure can be described in analytical form including the
boundary conditions at the ground and top planes. For the
associated discretized tangential electric field and current
density in the plane of metallization, the boundary condi-
tions are formulated pointwise. This cannot be performed
in terms of the transformed quantities f™”, g”" and,
therefore, requires a back-transformation into the original
domain. As in the spectral-domain approach, the last step
in the DDA procedure is the solution of a determinantal
equation depending on one of the physical parameters p of
the problem or the solution of a deterministic linear system
of equations for prescribed values of p.

The method has been applied only to shielded structures
so far, which is a consequence of the spatial discretization
that makes it difficult to extend it to open regions. Several
interesting similarities between the SDA and the DDA
become plausible if one recalls that the application of finite
integral transforms means a discretization in the spectral
domain. Extension to open problems with the SDA is
straightforward since fields of finite and infinite spatial
support both have contributions over the infinite spectral
domain. One of the advantages of the method of lines is
that it exhibits a comparatively low numerical expense for
the generation of each of the elements of the final matrix
equation. In addition, it can in a very flexible way be used
for the analysis of different conductor shapes and does not
require a choice of expansion functions. On the other hand,
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application of the DDA to three-dimensional field prob-
lems results in very high matrix orders. If, for example, in a
strip-type problem, a rectangular shielding with ground
plane F and conductor area F,, is assumed, the order of
the final DDA matrix is approximately

o=2m-N-Fx, (17)
F

With growing complexity of the conductor shape, the spa-
tial resolution M- N has to be increased and the number of
floating-point operations in the differential-difference ap-
proach is proportional to Q°. About the same resolution is
achieved by an SDA treatment using 2MN Fourier coeffi-
cients, which, however, determines only the linear number
of summations necessary to construct a matrix element.
The order of the final SDA matrix is not directly related to
M- N, but mainly a question of the intelligent choice or
systematic generation of expansion functions. It can be
made extremely low, which makes the SDA a preferable
technique for the repeated generation of MIC design infor-
mation. From this point of view, it is an advantage that it
allows the choice of expansion functions. Furthermore, the
spectral-domain approach is specifically suited to analyti-
cal preprocessing and speedup measures as will be shown
in the last section of this paper.

IV. SPECIFIC ASPECTS

In the analysis of MIC configurations by the spectral-
domain approach three classes of structures have to be
distinguished: shielded, covered, and open types. These are
shown in Fig. 2 for the cross section of a single microstrip
line. The shielded-type has been used extensively by con-
tributors to the SDA in transmission-line and resonator
problems. It presents a good description of real-life MIC
structures only if radiation and surface-wave excitation
from an adequate open structure are negligible. This ap-
plies, for example, for the technically used fundamental
modes of printed strip and slot transmission lines under
normal operating conditions [56]-[58] and to high-Q reso-

nators with properly chosen, not too large, .shielding di-

mensions [14]-[16], [30], [31]. However, practical MIC
shielding cases are usually large in dimensions compared to
the enclosed circuit elements, with the exception of finlines
and related millimeter-wave components [59], [60]. There-
fore, care has to be taken in the interpretation of data
derived from a shielded-type analysis if these shall be used
for MIC design purposes. With respect to this point of
view, the use of the covered, i.e., laterally open-type of
analysis seems to present a better choice for the char-
acterization of MIC structures in general. A cover shielding
can always be specified in the design of a practical circuit
and, therefore, taken into account properly. The assump-
tion of lateral openness is believed to provide the most
realistic one if design quantities have to be computed for
general applicability in the CAD of MIC’s or as a basis for
the generation of mathematical models. Nevertheless, nearly
all of the SDA contributions to the analysis of covered-type
configurations neglect energy leakage into the lateral direc-
tion. They are equivalent, therefore, to shielded-type SDA
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(a)

(©

Fig. 2. Microstrip cross sections representing three different classes of
MIC structures, (a) shielded, (b) covered, and (c) open type.

formulations with side walls removed left and right to
infinity. Only recently, lateral energy leakage has been
included in covered MIC analyses [40], [41], [61] and is
considered a prerequisite to the description of dynamic
coupling mechanisms. The open-type analysis of MIC
structures, such as the one shown in Fig. 2(c), is applicable
to nonradiating transmission-line modes, but mainly re-
served to problems where radiation into free space is of
dominant interest.

Using the shielded-type formulation, a systematic spec-
tral-domain technique for the hybrid-mode characteriza-
tion of MIC discontinuities and junctions has been de-
veloped by the author a few years ago [36], [62]. It is
represented pictorially in the flow diagram of Fig. 3 to
show how the SDA can be applied to derive design infor-
mation in a very general way. The technique avoids the
necessity of specifying sources and has, meanwhile, been
applied successfully to a variety of strip- and slot-type
problems [63]-[67]. It mainly refers to operating conditions
where energy leakage into the volume field is not notice-
able, but can, however, be extended to be valid without
that restriction. The main idea behind the technique shown
in Fig. 3 is a generalization of the Weissfloch or tangent
method [28] in conjunction with a three-dimensional SDA
resonator analysis. This generalization can be performed
and becomes practicable here because the total electromag-
netic field and current density is available from the analy-
sis which would not be accessible or practicable in an
equivalent measurement situation. On top of the left col-
umn of Fig. 3, the physical n-port investigated is shown in
a shielding box with the field volume subdivided into
short-circuited transmission-line sections (stubs) of length
I, and the n-port junction. The circuit representation using
scattering parameters is depicted on the right-hand side
with the respective reference planes RP,, i=1...n. For
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Fig. 3. A specific implementation of the SDA used for the frequency-
dependent characterization of discontinuities in strip- and slot-type
MIC’s.

fixed operating frequency w, the configuration is analyzed
in terms of successively interchanged resonant lengths /,,
exactly n times. By introduction of precomputed strip
" current density distributions into the expansion functions
used to describe J,, all' the boundary conditions except
those in the n-port region itself can be satisfied a priori.
The resonant lengths and the stub current density ampli-
tudes result from the numerical description of the n
successive hypothetical resonator experiments. They are
processed to obtain the complex amplitudes of the longitu-
dinal strip currents or electric fields of the stubs. Then,
using a power-related definition of characteristic stub im-
pedance, the complex wave amplitudes associated with
each of the n experiments are computed and assembled
into matrices 4, and B,. The scattering matrix of the
investigated n-port results from this easily. As a confidence
test for the validity of the results it is checked in parallel
that the power balance for the lossless n-port is satisfied to
a good approximation. The téchnique has the advantage of
providing phase information which is stationary with re-
spect to the current density and field distribution, respec-
tively [36]. It has its limitations if radiation mechanisms in
MIC’s are involved to a noticeable degree.

To understand leakage mechanisms in MIC’s, the
mathematical structure of the spectral immittance matrices
of (10) has to be considered. Independent of the degree of
openness and the number of dielectric layers prevailing in a
specific problem, the spectral impedances can always be
written in-the form [31], [34], [36], [38], [41]

k)%ZFE_'_ k)%ZFH kxky(ZFE_ ZFH)

Z ==
:(P) kxky(ZFE - ZFH) kyZZFE + kiZFH

(18)
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with
Zpp= ZFE(kfa P) Zpy= ZFH(k;?? P)~

The admittance matrix for slot-type problems follows from
inversion of (18) and of the impedance elements Z;g, Zzy.
It has exactly the same structure. Due to this duality, it is
again sufficient to discuss the strip-type case for simplicity.
The quantities Z,; and Z., are the total LSM and LSE
modal input wave impedances as seen into the medium
below and above the plane of metallization. Thinking in
terms of a transverse resonance approach [28], [29], there-
fore, makes clear that 1/Z ., and 1/Z,, have the proper-
ties of radial wave ecigenfunctions in the layered circuit
medium (1/Yy; and 1/Y,, for.slot-type problems). So,
the elements Zy; and Z, have poles for those values
k,=k,, of the radial wavenumber which are propagation
constants of the LSM and LSE modes in the inhomoge-
neous parallel-plate medium between the ground and top
planes if the conductor metallization is not present and
they represent surface waves for open-type structures [36],
[41]. The maximum discrete value of kgp corresponds to
the dominant LSM, radial wave in the circuit medium
which is the main cause for dynamic coupling in MIC’s
since this has zero cutoff frequency. With

= I-7 7. 2 _ 1.2 12
kXP_kXP+JkXP_i(kPP ky)

(19)

the associated poles in the complex k,-plane are all off the
real k/-axis as long as ky2 is larger than the value of kgp of
the LSM, mode. Physically, this means, for example, that
MIC transmission-line modes with propagation constants
k, larger than that of the LSM, mode are nonradiating.
This has already been discussed by Pregla in an early
contribution [56]; however, his analysis has not been ex-
tended into the radiation region.

Higher order modes on covered and open MIC transmis-
sion lines do not generally exist in nonradiating form. Also,
the respective MIC problems involving three-dimensional
fields are always affected by energy leakage [40], [41] even
if this may not be of practical concern at low frequencies.
The SDA formulation can be extended in application to
these cases by writing the scalar products of the final
equations (14) in the form

(Js 200} i) = [ 2K p) )4, (= )
* (20)

which 1s a consequence of Parseval’s theorem [56] and by
proper choice of the integration path C.. The encountered
immittance elements are meromorphic functions with re-
spect to k. in the covered case. The evaluation of (20) is
achieved by residue calculus techniques [68]. In three-di-
mensional problems, in addition, integration in the proper
related sheet of the complex k, plane is involved. The
simple principle of extension into the radiation region is a
further fundamental advantage of the spectral-domain ap-
proach and allows rigorous treatment of complex MIC
problems.

For the general rules of evaluating SDA integrals of the
type (20) and a discussion of the physical background, a
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Fig. 4. Integration paths C, in the SDA treatment of covered strip-type

MIC problems, energy leakage (a) neglected and (b) taken into account,
respectively.

covered transmission-line configuration such as that of Fig.
2(b) is considered. By introduction of the factor -

exp(— jck w)

1- exp (jck w)
2cos(ckw) ’

= >1
2cos(ck,w) ¢

(21)

the integrals in (20) can be split up into a sum of two
contributions for each of which the integration path C, can
be closed in the complex k -plane at infinity [39], [41]. This
is shown in Fig. 4(a) for an analysis which does not include
energy leakage, and in Fig. 4(b) where this mechanism is
properly accounted for. In both cases, the zeros of the
auxiliary cosine function in (21) introduce additional, non-
physical poles onto the real k’-axis. According to the
relation (19) and neglecting material loss, the LSM and
LSE wave poles are located on the axes or not, depending
on whether the leakage mechanism is incorporated into the
solution (square of propagation constant ,k§ complex) or
not (k2 a real number). The quantity w is a suitable
normalization width. The positive real constant c¢ is to
some degree arbitrary and can be utilized for numerical
check purposes and in convergence considerations. In-
tegrating along the real k/-axis across the single poles
artificially introduced by (21), Cauchy principal values are
taken [68].

If, in Fig. 4(a), a nonradiating mode would be consid-
ered, i.e., with a propagation constant larger than that of
the LSM radial wave, the LSM,, pole would be located on
the imaginary k{’-axis. In that case, the dominant contribu-
tions to the integrals in (20) would come from the discrete,
regular set of auxiliary poles, say k,,, on the real axis.
With the constant ¢ in the factor (21) chosen sufficiently
large, the set of k,, becomes very dense and the problem
could be described in-terms of this set alone. In the limit of
¢— oo, this is nothing else than numerical integration
along the real axis of the k -plane. However, describing an
MIC problem under radiation conditions, as actually pre-
vailing with the pole locations of Fig. 4(a), this becomes
more complicatied. Numerical integration along the kj-axis
and across the LSM-pole (Cauchy principle value) now
means introducing a discrete standing plane contribution
k., into the electric-field distribution [61]. This is equiv-
alent to the presence of a lateral shielding far away from
the MIC configuration, reflecting the radiated LSM -field.
The same type of result is achieved if one applies a
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transverse resonance appfoach to covered structures under
operating conditions in the radiation region [57], [58].

The leaky character of higher order MIC transmission-
line modes, discontinuities, and junctions of the covered-
type are correctly described by the integration path shown
in Fig. 4(b). This can be concluded from an investigation
of the migration paths of the LSM and LSE wave poles in
a slightly lossy dielectric medium [41], [61]. Those physical
poles which in the lossless case of Fig. 4(a) are located on
the real axis (here only the LSM -pole) are just below the
k’-axis for a small dielectric tangent different from zero.
They migrate across the real axis of the k -plane if an
additional radiation mechanism is involved. Therefore, the
original integration path C, (the k/-axis) for nonradiating
situations has to be distorted in the way indicated in Fig.
4(b). Otherwise, solutions would not pass over continu-
ously into the radiation region of operation. As Pregla has
already pointed out in his early study [56], the transition
from one state of a solution to another, i.e., when the
LSM-pole appears at the origin, does not present prob-
lems since the associated residues vanish then. The same
arguments and integration path discussed here are valid
also for the evaluation of integrals (scalar products) with
respect to the k -variable in the SDA solution of three-
dimensional field problems. However, depending on which

integration is performed first, additional branch cuts have

to be regarded either in the complex k- or k,-plane. A
broad and thorough treatment of the spectral-domain ap-
proach for a variety of representative leaky MIC problems
has been elaborated in a recent dissertation by Boukamp
{41].

V. PROGRESS: 1975-1984

To round out the view given so far for the spectral-
domain approach, a review is given of the improvements of
the technique and the more important results achieved by
its application during the last ten years. Emphasis is placed
on frequency-dependent solutions since these become more
and more important with the development of practical
MIC’s in the millimeter-wave region. Many of the contri-
butions mentioned do not use the SDA in its pure form but
deviate from it in the one step or another of the analysis.
The reader may get an impression, therefore, that a high
degree of flexibility is inherent in the details of the SDA
formulation. The discussion is subdivided according to
three different groups of MIC structures, namely transmis-
sion lines, resonators and antennas, and, finally, discon-
tinuities.

Considering printed microwave and millimeter-wave
transmission lines first, there has been a clear tendency
since 1975 to treat this class of problems in a generalized
way, allowing additional dielectric layers and more com-
plicated strip and slot configurations [24], [26], [32], [34],
[35], [59], [60], [69]-[78]. The inclusion of characteristic
impedance data becomes standard in computer analysis
programs, and also dielectric and conductor losses are
considered frequently [24], [26], [34], [59], .[60], [69],
[72]-[78], [79]-[80]. This makes visible the beginning orien-
tation of the SDA towards direct application in the design
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of MIC’s. Together with this trend, computer time and
storage requirements for the analysis programs become a
more important point of view [80]. However, from an
appraisal of methods applied to the microstrip dispersion
problem published by Kuester and Chang in 1979 [81], it
can be concluded that the majority of respective computer
packages at that time still involved some problems. There
was significant progress, therefore, when not only the
number of applications of the SDA increased further, but
in addition some conceptual simplifications, modifications,
and basic numerical considerations were reported. As
elegant and simple concepts, for example, the transfer
matrix approach [32] and the very similar spectral-domain
immittance concept [35] have been presented. Also,
El-Sherbiny [82], [83] provided interesting aspects to the
mathematical and physical background of the SDA and
applied a modified Wiener—-Hopf technique in the final
step of solution. Some of the rules to be regarded in order
to obtain stable, accurate solutions and a unified treatment
of shielded, covered, and open strip and slot structures
have been reported by the author [34]. The introduction of
finite conductor thickness into the SDA formalism is mainly
the result of Kitazawa’s work [21]-[23], [84]. Its effect on

coplanar waveguide properties, for example, is an increase

of guided wavelength and a decrease of characteristic im-
pedance, respectively.

With growing experience in the use of the SDA, applica-
tion of the technique shifted to more involved transmis-
sion-line problems. Coupled strip—slot structures have been
studied by various authors with regard to coupler design
and an extension of the range of characteristic impedances
achievable in microstrip [22], [35], [47], [71], [77]. Also, an
increasing portion of SDA work on transmission-line struc-
tures with anisotropic media has been reported. Borburgh
[85], [86] seems to have been the first to apply the technique
" to microstrip on a magnetized ferrile substrate and related
analyses followed [87], [88]. A variety of authors have
treated printed transmission lines in single- and double-
layered anisotropic dielectric media [89]-[92]. Only re-
cently, slow-wave MIS coplanar waveguide has been studied
with respect to MMIC application [93]. Beyond this, the
computation of the stopband properties of several periodic
structures by the spectral-domain approach has been. re-
ported [88], [94]-[96]. The last-mentioned reference also
contains some numerical results on Podell-type microstrip
couplers. As a further example for inhomogeneous struc-
tures, an analysis of tapered MIC transmission lines com-
bining the SDA for uniform lines with coupled-mode the-
ory has been presented [97]. Finally, a very efficient
hybrid-mode spectral-domain approach for conductor
arrays has been used by Jansen and Wiemer [98] in the
design of MIC interdigital couplers and lumped elements
on small computers.

Results achieved for resonators and antennas are consid-
ered together here since a large class of planar antennas
makes use of resonating open patch elements. The informa-
tion given on patch antennas, however, is by far incom-
plete, as the emphasis is placed on MIC’s in this paper. The
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first full-wave analyses of resonators concentrated on
shielded structures and gave quite accurate results for the
resonance frequencies and current density distributions of
the open case if Q-factors were high and interaction with

-the volume field in the chosen shielding box low [30], [31).

Taking this into account, Jansen studied microstrip reso-
nators of canonical and complicated shapes, with the latter
described by a polygonal contour in terms of high-order
finite-element polynomials for the current density [99].

Resonator shapes for which numerical results have been
generated are rectangle, circular disk and ring, concentric
coupled disk-ring and double-ring structure, stretched
hexagon, and regular octagon. This work has recently been
supplemented by Knorr [100] who analyzed a . shielded
short-circuited slotline resonator and by Sharma and Bhal
[101], [102] who provided shielded-type results for the
triangular shape and interacting rectangular microstrip
structures.

Already by 1978, Pregla [43] had investigated open reso-
nating microstrip rings including radiation using a Hankel
transform and formulating the problem in terms of com-
plex eigenfrequency. With increasing interest in microstrip
antennas, further related analyses of circular shapes were
performed in the years following [44]-[46], [103]-[105].
Itoh and Menzel presented a full-wave SDA treatment of
open rectangular microstrip patches in 1981 [106] with
clear emphasis on antenna applications. There is also direct
antenna design work, for example, contributions by Bailey
and Deshpande [107], [108] and by Newman ez al. [109],
which performs only part of the computational steps in the
spectral domain. Numerical integration along the real axes
in the spectral domain is the dominant choice in these
papers; however, singularitics near the integration path
may cause problems (see, for example, Newman’s remarks
[109)). The first results for covered MIC geometries includ-
ing the excitation of LSM and LSE waves in the layered
circuit medium have been provided by Boukamp and
Jansen [40], [41], [61]. The main intention of this research
work was to study the mathematical and physical back-
ground and prepare the way for an extension of the SDA
in application to dynamic MIC coupling problems. One of
the practical results achieved in this context is, for exam-
ple, that lateral leakage in MIC’s can be minimized if the
circuit cover height is chosen slightly lower than a value
which would correspond to the onset of the first LSE
mode.

The same covered-type spectral-domain approach has
also been used to study the simplest case of a leaky
microstrip discontinuity problem, i.e., the open end, with
an excitation formulation [40], [41]. The motivation was
again to provide a basis for the analysis of more com-
plicated geometries. Interestingly, the numerical results in
comparison with a resonator formulation indicate that
there is a noticeable coupling effect between the open ends
of half-wavelength resonators, such as those used, for
example, in coupled line filters. The explanation is that, on
the alumina substrate investigated, the distance between
the respective open microstrip ends is small compared to
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the wavelength of the involved LSM;-mode. Beyond this
very elementary but rigorous example, MIC discontinuities
have been computed using the SDA only for the static limit
[13] and by the frequency-dependent shiclded-type SDA
implementation outlined in the foregoing section [36],
[62]-{67], [110]. Due to the three-dimensional electromag-
netic fields and relatively complicated geometries involved,
this sparsity of results prevails for other methods to an
even larger extent. Systematic and quite extensive design
data have been published for open-circuited-microstrip and
suspended substrate lines, as well as short-circuited slots
[36] and for the symmetrical and asymmetrical gap in
microstrip and suspended substrate lines [63], [65]. Also,
. the inductive strip discontinuity in unilateral finlines, which
is the related slot-type structure, has been treated [64]. Very
recent work by Koster and Jansen provided a variety of
microstrip impedance step data for use in MIC design [67],
[110].

VL

The spectral-domain approach is a hybrid technique in
the sense that it requires (and allows!) a certain amount of
analytical preprocessing in order to achieve high computa-
tional efficiency for a specific problem or class of prob-
lems. One of its main disadvantages is the relatively high
numerical expense which has to be spent to evaluate the
coefficients of the final system of equations (14). These are
improper integrals or infinite series with only moderate
rate of convergence. The order of the final system, on the
other hand, can be held extremely small compared to other
techniques. This is achieved,- for example, by regarding
several criteria in the choice of the expansion functions
[80]. Briefly summarizing, the set of expansion functions as
a whole should be twice continuously differentiable in the
interior of the region on which it is defined, so that it is in
the domain of the original Helmholtz operator (1).
.Mathematical arguments and numerical experience indi-
cate that this avoids the existence of spurious, nonphysical
solutions [80]. Further, expansion functions in MIC prob-
lems should satisfy the edge condition, i.e., have the correct
order of singularity at the boundary of the conductor
metallization. This is a prerequisite to obtaining accurate
solutions with a low number of terms or, equivalently, with
a low order of the final system of equations. The set of
functions used should be complete in order to allow con-
vergence checks and investigation. It should be chosen with
all the physical insight that is available for the specific
problems, from static considerations, from idealizations
such as the planar magnetic-wall waveguide model [19] and
so on. The main rule is not to leave work to the computer
for the evaluation of what is known in advance of the
physical solution or can be obtained easier. This also
implies the precomputation of expansion functions by a
transmission-line SDA portion (two-dimensional fields) in
computer programs for the SDA solution of three-dimen-
sional field problems [36}. Finally, the use of static together
with stationary precomputed information.can provide a
means to generate vector expansion functions based on the
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continuity equation. The analytical and programming ex-
pense required on the side of the investigator may be
considerable, which mirrors the hybrid character of the
SDA. However, in the way outlined, very efficient CAD
tools can be developed by its application.

To come to a quantification of the numerical expense
associated with the SDA, the number of point operations
which have to be performed in the solution of typical MIC
problems is estimated. Also, the possibilities of reducing
this figure shall be discussed. Let us assume a not too
elementary MIC transmission-line case, in parallel, a reso-
nator problem formulated in Cartesian coordinates. The
final system of SDA equations (14) is dense and has to be
generated repeatedly in the iterative localization of the
zeros of its determinant as a function of the eigenvalue
parameter p. Even with an intelligently chosen start value
of p, this has to be done about 10 times. Under the
assumption of a reasonable choice of expansion functions,
the number of point operations necessary to obtain the
numerical value of the final SDA determinant is usually
small compared to the expense investigated for its genera-
tion. This is a consequence of the fact that the number of
summations required to compute a single coefficient (in-
tegral or series) of (14) is typically much larger than the
order of the system matrix. The latter may be

0=2---10and @ =4---100 (22)

for the transmission-line and resonator problem, respec-
tively.

For example, Q = 4 could apply to a simple, rectangular
half-wavelength microstrip resonator [14], [15]}, [36]. The
number of summations or discretization points to evaluate
each single scalar product may be 100---500 for the
two-dimensional and 1002 ---5002 for the three-dimen-
sional case. In particular situations, this may be even
higher [34] depending on the spectral distribution of the
involved fields. The complexity of the immittance func-
tions encountered depends only on the number of dielectric
layers considered and may be characterized by a figure of
at least 10---100 point operations. On the whole, this
amounts to a total count of point operations of about

TC=2-10%---25-10% and T7C =8-10% - - - 125-10*

‘ (23)
for the two cases considered (symmetric SDA matrices).
This looks quite high, particularly for the very right-hand
side. However, one has to keep in mind that the spatial
resolution assumed there is equivalent to a mesh of 25-10*
points in the plane of the MIC metallization. As a rough
estimate, the matrix order in a respective DDA treatment
would be Q = 5000, the matrix itself dense, and had to be
processed repeatedly about 10 times.

A reduction of numerical expense in SDA solutions is
achieved first by an optimization of the expansion func-
tions. This is performed according to the outlined criteria
and with some experience from a preliminary, crude ver-
sion. It-can be done with a relatively small amount of
reprogramming and produces a typical speedup factor of
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5---10 for nonelementary two- and three-dimensional
problems. Also, about a factor of 10 may be gained by
choosing an excitation formulation instead of solving an
eigenvalue problem which applies, however, only to the
three-dimensional case. The estimated speedup results since
the source formulation avoids repeated generation of the
final system (14). An additional reduction in computer
time can be obtained by splitting off asymptotic spectral
contributions from the coefficients of (14) and integrating
or summing up these by analytical techniques (a factor of

10). In eigenvalue problems, it is advisable to substitute the

spectral immittances by accurate one-dimensional inter-
polants [36] and optimize CP-time at the cost of storage
requirements [31] for that part of the computation which
does not depend on the eigenvalue p (a factor of 10). SDA
computer programs developed for regular industrial use in
MIC design justify even more expense in analytical pre-
processing. For these, the normal mode of application is
the repeated solution of the same problem for several
different operating frequencies. Therefore, a high speedup
factor compared to the first solution can be achieved if this
is employed to provide for the subsequent ones a very
compact low-order set of expansion functions (tested by
the author for the transmission-line problem described in
[98]). Thus, average CP-time is further reduced by about a
factor of 5. By a combination of such-analytical measures,
the total count of point operations may be brought down
to

TC=2-10%---5-10° and TC =8-10°---25-107 (24)

which is hardly achievable by other techniques. However,
great care has to be taken in properly designing the em-
ployed integration algorithms, i.e., choosing a correct spec-
tral representation. This particularly effects cases where
tight coupling is involved. For loose and multiple coupled
situations, a sufficiently stable matrix inversion algorithm
has to be chosen.

VIIL

The spectral-domain approach allows an elegant and
closed-form integral equation formulation for a broad class
of MIC problems which is reduced by one dimension
compared to the original field problem. It results in a
particularly low-order linear system of equations and pro-
vides design-relevant parameters in both the spectral and
the space domain. In so far as it may require a consider-
able amount of analytical preprocessing to achieve highest
efficiency, it is a hybrid method. A preference of the SDA
for MIC problems is to some extent confirmed by the fact
that the majority of rigorous frequency-dependent MIC
design information has been generated using this tech-
nique. The survey presented here further confirms this
preference; however, the advice should be deduced from
the discussion not to apply the SDA in a crude and
schematic way.

CONCLUSION
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