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Abstract —A survey is given of the so-called spectrat-domain approach,

an analytical and nnmencaf technique particularly suited for the solution of

boundary-value problems in microwave and millimeter-wave integrated

circuits, The mathematical formulation of the analytical part of thk ap-

proach is described in a generalized notation for two- and three-dimen-

sionaf strip and slot-type fields. In a similar way, the numerical part of the

technique is treated, keeping afways in touch with the mathematical and

physicaf background, as well as with the respective microwave applications.

A discussion of different specific aspects of the approach is preserrted and

outlines the peculiarities of shielded-, covered-, and open-type problems,

followed by a brief review of the progress achieved in the last decade

(1975- 19S4). we survey closes with considerations on numerical effi-

ciency, demonstrating that spectral-domain computations can by speeded
up remarkably by analytical preprocessing. The presented matenaf is based

on ten years of active involvement by the author in the field and reveals a

variety of contributions hy West German researchers previously not known

to the intematkxral microwave community.

I. INTRODUCTION

G ENERALLY SPEAKING, the term spectral-domain

approach (SDA) refers to the application of integral

transforms, such as the Fourier and Hankel transforms, to

the solution of boundary-value and initial-value problems.

As becomes obvious from the overview book and associ-

ated bibliography by Sneddon [1], this approach has been

applied to mechanical and electromagnetic problems for at

least a century. It provides an elegant tool for the reduction

of the partial differential equations of mathematical physics

to ordinary ones, which in many cases are amenable to

further analytical processing. During the last 15 years, the

spectral-domain approach has received considerably more

interest together with the growing importance of printed

circuits for very high frequencies, namely conventional and

monolithic microwave and millimeter-wave integrated cir-

cuits (MIC’S) fabricated by planar photolithographic tech-

nology. The actual and potential range of application of

this technique implies hybrid thin- and thick-film circuits,

monolithic MIC’S on gallium arsenide, planar resonators

and antennas, as well as multiconductor multilayer inter-

connections in high-speed computers, These circuits and

components typically operate at frequencies between 0.1

and 100 GHz, and the main intention of using the ap-

proach has been the derivation of accurate, particularly
frequency-dependent, design information.
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Already by 1957, Wu [2] had considered it an “obvious

thing to do” to apply a Fourier transform in the analysis of

microstrip lines. From the end of the 1960’s on, several

authors began to implement more and more of those steps

which are characteristic for what today is denoted the

spectral-domain approach for MIC’S. Yamashita and Mittra

[3], for example, solved Poisson’s equation in the transform

domain and computed microstrip line capacitance from a

variational expression under application of parseval’s the-

orem. Denlinger [4] in the United States and Schmitt and

Sarges [5] in West Germany both derived an approximate

solution to the microstrip dispersion problem in terms of

the transformed strip current density. Itoh and Mittra [6],

on the other hand, applied a spectral-domain approach in

essentially the form it is still used today to the computation

of slotline dispersion characteristics. Two years later, the

same authors explicitly used the notation” spectral domain

approach” for the specific technique (Galerkin’s method in

the transform domain) employed in one of their microstrip

contributions [7]. Recent analyses still follow the basic

outlines of this technique and the notation has been adopted

by the microwave community.

In the init@l- research phase, a variety of fundamental

applications and modifications of the spectral-domain ap-

proach and related methods had been reported within a

few years. Coupled. microstrip dispersion and characteristic

impedances were computed by Kowalski and Pregla [8]

and by Krage and Haddad [9]. Also, guided higher order

modes in open microstrip lines were treated by Van de

Capelle and Luypaert [10]. Itoh and Mittra [11] extended

the spectral-domain formalism to shielded microstrip lines

while Jansen [12] treated the same problem making use of a

least-square criterion instead of Galerkin’s method in the

final step of the solution. As a first application to micro-

strip discontinuity y problems, Rahmat-Samii et al. per-

formed a quite general static spectral-domain analysis [13].

The first full-wave analyses of hybrid-mode microstrip

resonator problems were reported by Itoh [14] and by

Jansen [15], [16] in 1974, including rectangular, disk, ring,

and concentric coupled shapes. Along the guidelines hav-

ing emerged in this way, the spectral-domain approach has

been used extensively for the characterization and analysis

of elementary structures frequently appearing in MIC’S.

These structures can be classified as conducting thin pat-

terns in one or more interfaces of a multilayer stratified

dielectric medium. Therefore, the associated electromag-
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netic boundary-value problems lend themselves ideally to

an SDA treatment. The partial differential equations con-

sidered are mainly the wave equation or, where small

dimensions compared to wavelength prevail, the Laplace

and the Poisson equation. Specific problems frequently

tackled by the spectral domain approach are:

1) the static or frequency-dependent characterization

of printed microwave transmission lines (a two-

dimensional electromagnetic field problem).

2) the static or frequency-dependent analysis of prob-

lems concerning strip and slot transmission-line dis-

continuities, junctions and resonators, respectively

and patch antennas (three-dimensional electromag-

netic fields).

The contribution given here outlines the basic features of

the analytical formulation of the spectral-domain approach

as it applies to the above-mentioned problems. It is shown

how for printed planar structures of arbitrary connected

and disconnected shape embedded in a multilayer dielec-

tric medium a single closed-form integral equation emerges

from the application of the analytical steps of the SDA. As

a result of explicit construction of that portion of the

solution which depends on the vertical coordinate, this

integral equation comes out reduced by one dimension

compared to the original partial differential equation. From

the beginning of the analysis, a considerable reduction in

complexity is achieved and reduces the expense for the

subsequent numerical part of the approach. This provides

one of the important arguments for the superiority of the

spectral-domain approach compared to other techniques.

In a discussion of the numerical procedure usually em-

ployed to solve the derived integral equation, the peculiari-

ties of eigenvalue-type and deterministic MIC problems are

treated briefly. There are arguments to prefer a Galerkin

solution with certain symmetry properties for the former,

while the latter do not generally result in a symmetric;

respectively, Hermitian system of equations. From the

obtained solutions, most of the quantities required in the

characterization and analysis of MIC’S can be obtained

directly in the transform domain. Only one of the methods

recently applied to MIC’S shares several of the advantages

of the SDA: the differential-difference approach (DDA),

also called the method of lines [17]. A comparison with

this, therefore, deserves a brief discussion.
After presenting these general features, the different

aspects of the spectral-domain approach are outlined which

have to be considered for shielded structures, laterally open

structures, and configurations which are completely open

electromagnetically. A specific implementation of the ap-

proach recently developed for the systematic frequency-

dependent analysis of discontinuities and junctions in

MIC’S is described. It is discussed further as to how the

radiation condition can be incorporated into the SDA

formulation by proper choice of the integration path pre-

vailing for the basic integral equation. To round out the
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Fig. 1. (a) Microstrip line and (b) coplanar waveguide as examples for

MIC transmission lines and (c) generalized MIC structure together with

coordinate system used in the discussion.

picture given of the spectral-domain approach, the more

important results achieved by its application are sum-

marized in a subsequent section, and the state-of-the-art is

described.

The last section of the paper is ~ discussion of the

advantages and disadvantages of the spectral-domain ap-

proach. Emphasis is placed on the hybrid character of this

technique which requires (and allows!) a certain amount of

analytical preprocessing to achieve high efficiency. It is

shown, further, how most of the disadvantages of the

technique can be removed and to what degree, typically, a

specific class of problems can be speeded up.

Remarks on the numerical problems associated with the

development of user-oriented SDA packages are made and

critical parts of these are illuminated. Finally, the main

characteristics of the spectral-domain approach are sum-

marized in a brief conclusion.

II. MATHEMATICAL FORMULATION

Some elements of the analytical steps necessary to apply

the spectral-domain approach to specific problems, par-

ticularly the characterization of MIC transmission lines,

have already been described in overview books [18], [19].

The treatment given here generalizes the formulation as far

as possible and emphasizes those features which the differ-

ent classes of MIC problems all have in common. For a

visualization of the physical construction of the configura-

tions to be considered, Fig. 1 shows (a) an open microstrip

line, (b) a coplanar waveguide suspended above the ground

plane of a circuit environment, (c) and a quite general

shielded structure. The latter serves for the following dis-

cussion and could as well be laterally open or completely
open. It provides an idealized view of the basic construc-

tion of MIC’S indicating that the passive portions of these

consist mainly of a thin conductor metallization in one or

more interfaces of a double or multilayer dielectric medium;

for an overview, see [20].

In agreement with common microwave practice, the

formulation is in terms of time-harmonic electromagnetic

fields, namely, a time dependence of exp (jtit). Vector

quantities, like the electric field ~, are written by single

underlining, matrices by double underlining. The involved

conductors are assumed to have ideal conductivity K and
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negligible thickness t.This is a very r%listic assumption in

hybrid MIC’S, where strip and slot widths are usually large

compared to conductor thickness. In monolithic MIC’S on

gallium-arsenide, this is not valid with the same generality.

Here, the assumption is mainly a matter of convenience

and simplification of the treatment. The consideration of

finite thickness in the SDA formulation can be achieved by

treating the thick metallization as a separate layer, see for

example [21]–[23]. In addition, it is convenient in most

cases to assume lossless dielectric media since this allows a

ral number arithmetic for the SDA algorithm, except for

cases where radiation or surface-wave excitation is in-

volved. Loss parameters are usually introduced by per-

turbation methods subsequent to a numerical solution

neglecting loss. This also applies to the evaluation of

conductor loss, which can be taken into account if the

asymptotic behavior of the field derived for zero metalliza-

tion thickness is appropriately modified [24]–[27]. In each

of the layers i =1,2 . . . L of a general configuration like

that of Fig. 1, the electromagnetic field is best formulated

in terms of scalar LSM and LSE wave potentials [28], [29].

This is equivalent to the use of vector wave potentials

having only one component in the z-direction, i.e., per-

pendicular to the stratified circuit medium. It allows a

completely decoupled and, therefore, particularly simple

analytical treatment of all classes of MIC problems

[30] -[36] independent of the number of dielectric layers

involved. This specific choice naturally leads to what Itoh

[35] has named the spectral-domain inmittance approach.

Just recently, Omar and Schunemann [37] have shown that

only coupling of the LSE and the LSM contributions to the

electromagnetic field occurs and is required in satisfying

the edge condition with the last step of the solution. The

scalar LSM and LSE wave potentials are denoted ~ and g

here. They are subject to the homogeneous Hehnholtz

equation

(A+k~)fi=(A+k~) g,=O (1)

in each of the layers i =1,2 . . . L of the circuit medium;

with ki denoting the wave number associated with the i th

layer. It should be stressed that the homogeneous form of

(1) applies even in the case of excitation problems. With

the spectral-domain approach, sources are introduced in a

natural way as impressed current densities or electric fields

only into the interfaces between the layers [38]–[41]. In-

stead of considering the space-domain form of the Helm-

holtz equation (1) directly, its spectral-domain equivalent is

used. Without loss of generality, the scalar potentials may

be written in the form of inverse two-dimensional Fourier

transforms, for example,

f@,y, z)=jcjcf(kx,ky,z)
.y

.exp(– j(kXx + kyy)) ~x@. (2)

For configurations of circular symmetry, the use of Hankel

transforms is an adequate choice [1]~~42]–[46]. In transmis-

sion-line problems, (2) is reduced by one dimension since

these problems can be formulated in terms of the cross-sec-

tional field alone postulating a longitudinal dependency of

the form exp ( – jkyy). Alternatively, for these cases, the

spectral wave potential ~ may be viewed as factorized and

containing a y-dependent factor in the form of a Dirac

distribution, so that the integration in (2) reduces to one

dimension. In the high majority of SDA contributions

published, the integration paths CX and CY have been

chosen to coincide with the respective coordinate axes. The

spectral variables kx and ky may be interpreted each as a

measure of spatial oscillation of the described field which

is useful for later convergence considerations. This is im-

mediately obvious if (2) implies a finite Fourier transform

[11] and the spectral wave numbers kx and/or k, form an

infinite numerable sequence. In that case, f(kxm, ky~, z)

describes the Fourier series coefficients of ~,(x, y, z) and

these values of kxm, ky. are chosen in such a way that the

boundary conditions on a lateral shielding parallel to the

z-axis are satisfied, Further generalizing, one may consider

such coefficients as being associated with any two suitably

chosen complete orthogonal sets of solutions of the Helm-

holtz equation which are TM and TE with respect to the

z-direction and satisfy the lateral boundary conditions [30],

[31]. At the same time, this reveals how a suitable finite

integral transform can be constructed for a given cross

section of the shielding. In addition, this generalization

makes clear that the mathematical formulation can be

discussed completely independent of the special cross sec-

tion or even the existence of a lateral shielding. The

Helmholtz operator of (l), if applied in the transform

domain, always appears as

132
A+k:=—

d2
+k:–k:– k;=_ + k:,

C?z2 az2
(3)

which is an ordinary differential operator. Due to the

simple layered planar construction of MIC’S, the trans-

formed wave potentials fi and ~j can be determined ana-

lytically and adopt the general form

i(kx, ky>z)=a,(kx, ky)”cos(kzl(z-zl))

+bl(kx, ky).sin(k., (z–z,)), i=l. . “L. (4)

The functions a, and bi are spectral distributions weighting,

the elementary plane-wave constituents with respect to the

z-axis. The parameter Zi is arbitrary and is, for example,

introduced to allow convenient satisfaction of the boundary

conditions at the conducting ground plane and cover

shielding usually existing in MIC’S. With the relations

–k2~ ‘u fi=, =k;~,,k; =k; +k;.i~~,~z, – p ,? J P, (5)

it becomes clear that homogeneous boundary conditions

prevail for ~ and ~Z identical to those for the transformed

field components E=, and Hz,. Further, since the transform
defined by (2) affects only the x and y coordinates, all

conditions specified for the spatial electromagnetic field in

planes of constant values of z can be directly transferred

into the spectral domain. Therefore, in a configuration

involving the layers i =1,2 . . . L, the potential j at the
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ground and top plane of the multilayer medium is

l(kx, kY, z)=a, (kx, kY)cos(kZl(z–zl)), i=l, L

(6)

if ZI and z= describe the positions of the ground and cover

shielding. In complete analogy, g, is proportional to the

respective sine function for i = 1 and i = L as a conse-

quence of the vanishing of HZ,(X, y, z) at z = ZI and
Z=z ~. For vertically open structures like antennas and

open microstrip, the potentials ~~ and ~~ both have an

exponential z-dependence. The complete transformed elec-

tromagnetic field in all of the layers i =1,2 . . . L is derived

by application of the spectral-domain equivalent ~ of the

v operator, namely, by

1
&i=- - )“6 X6 x(@fz)+6 X(juz .

J~P,
(;)

These relations have the same form as their spatial counter-

parts [28], [29] and result by substituting the algebraic

multiplicators jkx and jky for the respective partial dif-

ferential operators. Together with the foregoing discussion

they show that, in a circuit medium of L layers, the

total electromagnetic field can be described by 4(L – 1)

independent spectral LSM and LSE distributions
al ( kX, ky), b, ( kx, ky). For the dielectric interfaces between

the different layers, exactly the same number of continuity

conditions can be formulated in the spectral domain, i.e.,

@xl – kx,+l=o q, – q,+l=o

Hx, – fixi+l= – jyi q, – Iiy,+l= + !7Xi (8)

fori=l... L – 1 and z fixed at its interface value for each

subscript i. They mirror the continuity of the electric field

E* tangential to the interfaces independent of the presence

of a thin metallization. At the same time, they describe the

discontinuity of the tangential magnetic field at such a

metallization in terms of a surface current density Jt. In

interfaces which do not contain conductors, .Ir is defined

to be zero, enforcing the magnetic field continuity there.

By analytical processing of the relations (8), all the un-

known distributions a, and b, ean be eliminated or ex-

pressed by the spectral-domain current density components

~Xl and ~Y,. The latter may exist in only one of the

interfaces or in several of these. In this stage of the

analysis, the only boundary conditions which remain to be

satisfied are those of the electric field ~r tangential to the

conductor metallization and of the surface current density

.1, to vanish in complementary regions. How the spectral-

domain relations resulting from the analytical evaluation of

(8) have to be arranged for further processing, therefore,

depends on whether the metallized interfaces can be char-

acterized as strip-type (i = ist) or slot-type (i = i,sl), respec-

tively. In the general case, an algebraic spectral-domain

and

(~ oJ*,.,, ~,,,. ~~2X,$,, iyi$, ~~~)T ‘ (9)

by a spectral immittance matrix; see for example [22], [35],

[47]. T denotes transposition and is used only fo~- conve-

nience of writing. The lower one of the two vectors shown

is put onto the right side of the described algebraic relation

because its elements are better suited for expansion into

known functions. These elements are typically confined to

a small portion of the affected interfaces. For a similar

reason, the upper one of the vectors is arranged onto the

left side of the spectral-domain equation. By this, it is

described by the other vector and needs to satisfy boundary

conditions on only a small portion of its region of ex-

istence. The spectral algebraic relation between the vectors

(9) is equivalent to a single integral equation which results

by application of the transform inherent in (2). Since the

whole discussion has been performed without recourse to

particular shapes of the metallization pattern, this is true

for arbitrary planar connected and disconnected conduc-

tors. From the procedure outlined, the kernel of the in-

tegral equation is available in analytical form. Further, this

integral equation comes out reduced by one dimension

compared to the original field problem associated with (l).

It is one-dimensional for transmission-line problems and

two-dimensional for discontinuities, resonators, and so on.

As (4) shows, the z-dependency of the field is described in

analytical form. In most cases of practical interest, the

MIC configurations analyzed are either strip-type or slot-

type exclusively, with only one layer of metallization. Un-

der this presumption, the relation between the vectors (9)

reduces to the simpler form

(%,> fiyzs,)T= Z(P). (.?xlst, ~ylst)T—

or

(Z1S1! ~yJs/) T=@)” @x,,[, ly,,,)T. (lo)

The quantity p has been introduced to remind one of the

fact that the elements of ~ and ~ depend in a known,

analytical form on physicrii param~ters defining th~ con-

sidered MIC problem (for example, vertical geometry,
shielding dimensions, or operating frequency). Obviously,

the spectral immittance matrix ~ is the inverse of ~ if both

equations in (10) refer to the s~me problem and dielectric

interface. For this reason, we may also write in the space

domain

E= LW(P)”J, or J,= L;l(P)”E, (11)

where & = ( Ex, Ey ) ~ and Jt = ( Jx, Jy) T are specialized to

denote electric field and current density in the plane of the

circuit metallization. The integral operators Lm and L: 1

are linear with respect to the vectors they operate on and

both have a dyadic kernel defined by the spectral-domain

Green’s immittance matrices ~ and ~. The constituents of—
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this kernel can be determined in a particularly elegant way

by the so-called spectral-domain imrnittance approach [32],

[35]. It has been shown by the author for shielded con-

figurations that by suitable choice of an orthonormal vec-

torial function basis in (2), the kernel can be described by a

single infinite scalar set of wave impedances ~. in conjunc-

tion with the elements of the function basis [30], [31]. In

that case, the discrete impedance elements ~. are equal to

the modal input wave impedances of the cylindrical shield-

ing as seen in the plane of metallization. Independent of

these details, there is always a duality between the strip-type

and the slot-type formulation as visible in (10) and (11).

For the former, the tangential electric field El has to

vanish on the strip metallization F,t, while for the latter,
the surface current density ~~ does not exist in slot regions

F,,, i.e., outside of the metallization. Splitting up the right-

hand quantities of (11) into an excited term (subscript lex)

and a source or impressed term (subscript tire) further

yields

l&=Q = L~(~-).(J,.X+J,i~) forx, y = F,t

These final integral equations are written here as in the

formulation of a scattering problem [38] -[41]. They define,

at the same time, the electric field E* and current density .Jt

in the complementary regions F.; 1 and F,~ 1, i.e., outside of

strips and on the metallization around slots. If sources

~, ,~, I& ~ are note present, like in transmission-line and

resonator problems, the equations in (12) each define a

so-called nonstandard eigenvalue problem [48]–[50]. This

notation applies since, without sources, (12) can be solved

only for specific values of the parameter p (the eigenvalue),

which is contained in the integral equation kernels in

nonlinear, usually transcendental form. Which physical

quantity is chosen in a problem as the parameter p is to

some degree arbitrary. In transmission-line problems, the

usual choice is p = /l, i.e., the propagation constant, or

p = ~ 2, the square of it. Resonator problems are conve-

niently treated in terms of p = W., the resonance frequency,

or p = l., a dimension of the resonator.

III. NUMERICAL SOLUTION -

The standard procedure applied in most computer solu-

tions of the integral equations (12) today is Galerkin’s

method in the spectral domain, particularly for the eigen-

value problem. This is a preferable choice resulting from

the self-adjointness of the involved integral operators and

following the argumentation by Barrington [51]. The

stationarity of such solutions has been discussed in an

early contribution by the author in comparison to a

least-squares alternative [31]. It has recently been shown by
Linden in a general context for the eigenvalue parameter p

with respect to the trial field [48]–[50] which is .lt .X for

strip problems and Et .X for slot-type configurations. To

simplify the discussion, restriction to strip-type problems is

allowed without loss in generality. The numerical proce-

dure is best understood if the equations prevailing in the

spectral and the space domain are considered in parallel,

i.e., writing briefly

Ef=Lm(P)”(Jtex +Jlirn) lf=~(P)”(lfm +Zlrn).

(13)

In the space domain, the physical vectors ~, and ~ = ~teX

+ ~t i~ are different from zero in the complementary re-

gions F.; 1 and F~l. The unknown surface current density

~teX is expanded into a suitable, preferably complete set of

expansion functions defined on F,l and vanishing outside.

By this, continuity of the magnetic field outside the

metallization is achieved at the same time. The expansion

of ~t .X is actually performed in the original, spatial domain

since this provides the best physical insight for a good

choice. It depends on the specific problem under investiga-

tion whether the functions .& chosen should be easily

transformable into the spectral domain or not. For the

application of Galerkin’s method, the set of testing func-

tions necessary to enforce the vanishing of I& on the

conductor region F,t is the same as the expansion used, say

~t~. The scalar product employed in the testing process is

commonly defined by integration over F’t without a specific

weighting factor and expressed here using parentheses (,).

Making use of the linearity of the integral operator in-

volved, the standard process of testing [51] finally yields

z%(Jt,A(P)”& )=-( J/,, Lm(P).Jtim)
k

or

The second alternative and mathematically identical equd-

tion applies as a consequence of Parseval’s theorem [1],

which also serves for a unique definition of the associated

scalar product (,) in the spectral domain. In eigenvalue

problems, the right-hand side of (14) vanishes and a non-

trivial solution & exists only if the determinant of the

respective linear system of equations is zero. This provides

the nonlinear eigenvalue equation for the unknown param-

eter p and, subsequent to an iterative evaluation of p, the

associated surface current distribution <t= ~t .,. The elec-

tric field outside of the metallization is found from the

application of (13). For MIC excitation problems, (14) is

deterministic and can be solved in a single step for a

prescribed value of the parameter p. The main difficulty in

such cases is a realistic formulation of the excitation term
~, i~ such that it well describes the physical situation. Also,

the introduction of such a source term may complicate the

satisfaction of boundary conditions in its spatial vicinity as

compared to an equivalent eigenvalue formulation [36]. As

long as the source chosen has finite support in the x-y
plane, the field region ‘is finite and the expansion functions

are chosen properly, Galerkin’s method can still be ap-

plied, for example, if the source is a slit voltage generator

or a strip current sheet [38], [39]. However, if the field is

excited by a transmission-line mode coming in from infin-

ity and a reflected wave is involved, Galerkin’s method
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cannot be applied any more since the associated scalar

products become unbounded. In that case, which is a good

description of practical MIC excitation problems, another

version of moment methods has to be employed [40], [41]

enforcing existence of the scalar products. Expansion and

test functions have to be different then with the conse-

quence that the final system of equations (14) is not

symmetric or Hermitian any longer.

It should have become obvious from the discussion that

interpreting the numerical procedure as” Galerkin’s method

in the transform domain” is too restrictive not only be-

cause of the last-mentioned details. Actually, it does not

make a mathematical difference which one of the equations

(14) is considered if the presumptions necessary for the

application of Parseval’s theorem are satisfied. As a rule of

thumb, in laterally open problems, evaluation of the scalar

products in (14) is alleviated if the spectral quantities are

used. In these cases, expansion functions should be selected

with explicitly available analytical transforms. On the other

hand, for shielded configurations, it may have advantages

to perform the scalar product operation in the spatial

domain, particularly if a suitable orthogonal set of func-

tions can be constructed for the description of the electro-

magnetic field [30], [31]. Also, it is generally easier to

construct complete sets of expansion functions for conduc-

tors of complex shape in the space domain. So, the major

advantage of the so-called spectral-domain approach is

that it allows one to shift between the space and the

transform domains in essentially all steps of the processing.

The same applies to the computation of MIC design quan-

tities from solutions obtained by the approach. Quantities

like quality factors, dielectric and magnetic loss, conductor

loss, and power transported in the cross section of trans-

mission lines can with advantage be computed in either of

the domains depending on the shielding situation and the

specific problem. The evaluation of such design data in-

volves volume or surface integration over th~ products

~i ‘B,* ~, “B,* and ~, X H,* (15)

where the asterisk denotes complex conjugate. Integration

over the vertical z-coordinate is always performed analyti-

cally due to the simple trigonometric dependencies associ-

ated with the layered MIC structure. Along the other

coordinates, Parseval’s theorem again allows a choice. Care

has to be taken in conductor loss computations for metalli-

zations of zero thickness. Because of the order of the edge
singularity of the field for conductors of vanishing thick-

ness [52], the square of the magnetic field tangential to the

metallization is not integrable. However, this can be re-

paired to achieve a good approximation of conductor loss

by proper modification of the asymptotic behavior of the

transform of the magnetic field [24], [25]. The idea behind

this is that, except for the immediate vicinity of the con-

ductor edges, the field does not change noticeably if a

small, finite thickness is introduced. The modification may

also be performed in the spatial domain if a strip-type

problem prevails for which the original current density

distribution is available in closed form. Also, longitudinal

strip current or transverse slot voltage may be evaluated in

the space domain for the same reason. These quantities are

often used in the calculation of characteristic impedances

of strip and slot transmission lines [8], [9], [24], [34].

Similar advantageous properties as those described for

the spectral-domain approach are shared to some degree by

one of the methods recently applied to MIC’S. This is

named the differential-difference approach (DDA) here

and is also called the method of lines [17], [53]–[55]. The

fundamental similarity to the SDA formulation consists in

the fact that it reduces the original Hehnholtz equation (1)

to a system of ordinary differential equations which can be

solved explicitly. In contrast to the spectral-domain ap-

proach, the reduction in complexity and presumption for

further analytical processing is achieved by discretization

of the Hehnholtz operator, writing, for example,

+fm,n-l_2 f,m,n+~m,n+l

h;
= O. (16)

This implies a two-dimensional finite-difference represen-

tation of the field for each plane of constant coordinate z,

i.e., ameshof points m,n with m=l... M,n=N... N. It

describes a band-structured system of coupled ordinary

differential equations with a total number of 2MN un-

knowns for two scalar wave potentials. The system can be

decoupled, i.e., brought into diagonal form, leading to the

same number of discrete transformed potentials, say ~rn’ n

and ~,’” 3‘. For these, the z-dependency in the layered MIC

structure can be described in analytical form including the

boundary conditions at the ground and top planes. For the

associated discretized tangential electric field and current

density in the plane of metallization, the boundary condi-

tions are formulated pointwise. This cannot be performed

in terms of the transformed quantities ~m”, jj,m’” and,

therefore, requires a back-transformation into the original

domain. As in the spectral-domain approach, the last step

in the DDA procedure is the solution of a determinantal

equation depending on one of the physical parameters p of

the problem or the solution of a deterministic linear system

of equations for prescribed values of p.

The method has been applied only to shielded structures

so far, which is a consequence of the spatial discretization

that makes it difficult to extend it to open regions. Several

interesting similarities between the SDA and the DDA

become plausible if one recalls that the application of finite

integral transforms means a discretization in the spectral

domain. Extension to open problems with the SDA is

straightforward since fields of finite and infinite spatial

support both have contributions over the infinite spectral

domain. One of the advantages of the method of lines is

that it exhibits a comparatively low numerical expense for

the generation of each of the elements of the final matrix

equation. In addition, it can in a very flexible way be used

for the analysis of different conductor shapes and does not

require a choice of expansion functions. On the other hand,



JANSEN:MICROWAVEINTEGRATEDCIRCUITS 1049

application of the DDA to three-dimensional field prob-

lems results in very high matrix orders. If, for example, in a

strip-type problem, a rectangular shielding with ground

plane F and conductor area F,, is assumed, the order of

-the final DDA matrix is approximately

(17)

With growing complexity of the conductor shape, the spa-

tial resolution M. N has to be increased and the number of

floating-point operations in the differential-difference ap-

proach is proportional to Q3. About the same resolution is

achieved by an SDA treatment using 2 MN Fourier coeffi-

cients, which, however, determines only the linear number

of summations necessary to construct a matrix element.

The order of the final SDA matrix is not directly related to

M. N, but mainly a question of the intelligent choice or

systematic generation of expansion functions. It can be

made extremely low, which makes the SDA a preferable

technique for the repeated generation of MIC design infor-

mation. From this point of view, it is an advantage that it

allows the choice of expansion functions. Furthermore, the

spectral-domain approach is specifically suited to analyti-

cal preprocessing and speedup measures as will be shown

in the last section of this paper.

IV. SPECIFIC ASPECTS

In the analysis of MIC configurations by the spectral-

domain approach three classes of structures have to be

distinguished: shielded, covered, and open types. These are

shown in Fig. 2 for the cross section of a single microstrip

line. The shielded-type has been used extensively by con-

tributors to the SDA in transmission-line and resonator

problems. It presents a good description of real-life MIC

structures only if radiation and surface-wave excitation

from an adequate open structure are negligible. This ap-

plies, for example, for the technically used fundamental

modes of printed strip and slot transmission lines under

normal operating conditions [56]–[58] and to high-Q reso-

nators with properly chosen, not too large, shielding di-.

mensions [14]–[16], [30], [31]. However, practical MIC

shielding cases are usually large in dimensions compared to

the enclosed circuit elements, with the exception of finlines

and related millimeter-wave components [59], [60]. There-

fore, care has to be taken in the interpretation of data

derived from a shielded-type analysis if these shall be used
for MIC design purposes. With respect to this point of

view, the use of the covered, i.e., laterally open-type of

analysis seems to present a better choice for the char-

acterization of MIC structures in general. A cover shielding

can always be specified in the design of a practical circuit

and, therefore, taken into account properly. The assump-
tion of lateral openness is believed to provide the most

realistic one if design quantities have to be computed for

general applicability in the CAD of MIC’S or as a basis for

the generation of mathematical models. Nevertheless, nearly

all of the SDA contributions to the analysis of covered-type

configurations neglect energy leakage into the lateral direc-

tion. They are equivalent, therefore, to shielded-type SDA

-

(a)

-

(b)

(c)

Fig. 2. Microstnp cross sections representing three different classes of

MIC structures, (a) shielded, (b) covered, and (c) open type.

formulations with side walls removed left and right to

infinity. Only recently, lateral energy leakage has been

included in covered MIC analyses [40], [41], [61] and is

considered a prerequisite to the description of dynamic

coupling mechanisms. The open-type analysis of MIC

structures, such as the one shown in Fig. 2(c), is applicable

to nonradiating transmission-line modes, but mainly re-

served to problems where radiation into free space is of

dominant interest.

Using the shielded-type formulation, a systematic spec-

tral-domain technique for the hybrid-mode characteriza-

tion of MIC discontinuities and junctions has ‘been de-

veloped by the author a few years ago [36], [62]. It is

represented pictorially in the flow diagram of Fig. 3 to

show how the SDA can be applied to derive design infor-

mation in a very general way. The technique avoids the

necessity of specifying sources and has, meanwhile, been

applied successfully to a variety of strip- and slot-type

problems [63]–[67]. It mainly refers to operating conditions

where energy leakage into the volume field is not notice-

able, but can, however, be extended to be valid without

that restriction. The main idea behind the technique shown
in Fig. 3 is a generalization of the Weissfloch or tangent

method [28] in conjunction with a three-dimensional SDA

resonator analysis. This generalization can be performed

and becomes practicable here because the total electromag-

netic field and current density is available from the analy-

sis which would not be accessible or practicable in an
equivalent measurement situation. On top of the left col-

umn of Fig. 3, the physical n-port investigated is shown in

a shielding box with the field volume subdivided into

short-circuited transmission-line sections (stubs) of length

/i and the n-port junction. The circuit representation using

scattering parameters is depicted on the right-hand side

with the respective reference planes RPi, i =1... n. For
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,

——/-

RP1 ~ RP2

m “=

L 1

Fig. 3. A specific implementation of the SDA used for the frequency-

deuendent characterization of discontirmities in strb and slot-tree
MiC’s.

. .

fixed operating frequencyti, theconfiguration is analyzed

in terms of successively interchanged resonant lengths 110

exactly n times. By introduction of precomputed strip

current density distributions into the expansion functions

used to describe ~t, all” the boundary conditions except

those in the n-port region itself can be satisfied a priori.

The resonant lengths and the stub current density ampli-

tudes result from the numerical description of the n

successive hypothetical resonator experiments. They are

processed to obtain the complex amplitudes of the longitu-

dinal strip currents or electric fields of the stubs. Then,

using a power-related definition of characteristic stub im-

pedance, the complex wave amplitudes associated with

each of the n experiments are computed and assembled

into matrices ~. and go. The scattering matrix of the

investigated n-port results from this easily. As a confidence

test for the validity of the results it is checked in parallel

that the power balance for the lossless n-port is satisfied to

a good approximation. The technique has the advantage of

providing phase information which is stationary with re-

spect to the current density and field distribution, respec-

tively [36]. It has its limitations if radiat@ mechanisms in

MIC’S are involved to a noticeable degr;e.
To understand leakage mechanisms in MIC’S, th;

mathematical structure of the spectral imrnittance matrices

of (10) has to be considered. Independent of the degree of

openness and the number of dielectric layers prevailing in a

specific problem, the spectral impedances can always be
written in-the form [31], [34], [36], [38], [41]

[

k:Z~~ + k;Z~H kxky( Z~~ – Z~H)
~(p)=— kxky( Z,. – Z~H) k:Z., + k:Z~H

I

(18)

with

%=-%.(%P) -%=-% (%,P)

The admittance matrix for slot-type problems follows from

inversion of (18) and of the impedance elements Z~~, ZF~.

It has exactly the same structure. Due to this duality, it is

again sufficient to discuss the strip-type case for simplicity.

The quantities Z~K and Z~~ are the total LSM and LSE

modal input wave impedances as seen into the medium

below and above the plane of metallization. Thinking in

terms of a transverse resonance approach [28], [29], there-

fore, makes clear that l/Z~~ and l/Z~~ have the proper-

ties of radial wave eigenfunctions in the layered circuit

medium (1/ Y~~ and 1/ Y~~ for. slot-type problems). So,

the elements Z~~ and Z~~ have poles for those values

kP = kPP of the radial wavenumber which are propagation

constants of the LSM and LSE modes in the inhomoge-

neous parallel-plate medium between the ground and top

planes if the conductor metallization is not present and

they represent surface waves for open-type structures [36],

[41]. The maximum discrete value of k~P corresponds to

the dominant LSMO radial wave in the circuit medium

which is the main cause for dynamic coupling in MIC’S

since this has zero cutoff frequency. With

kx, = k;, + jk:p = ~ ( k~P – k~)l’2 (19)

the associated poles in the complex kX-plane are all off the

real k;-axis as long as k; is larger than the value of k~p of

the LSMO mode. Physically, this means, for example, that

MIC transmission-line modes with propagation constants

ky larger than that of the LSMO mode are nonradiating.

This has already been discussed by Pregla in an early

contribution [56]; however, his analysis has not been ex-

tended into the radiation region.

Higher order modes on covered and open MIC transmis-

sion lines do not generally exist in nonradiating form. Also,

the respective MIC problems involving three-dimensional

fields are always affected by energy leakage [40], [41] even

if this may not be of practical concern at low frequencies.

The SDA formulation can be extended in application to

these cases by writing the scalar products of the final

equations (14) in the form

(Jr,ztP)ik)x=J2 (kx7P)zk(kx)”zt,( -kx)~kx
cx–

(20)

which is a consequence of Parseval’s theorem [56] and by

proper choice of the integration path CX. The encountered

immittance elements are mesomorphic functions with re-

spect to kx in the covered case. The evaluation of (20) is

achieved by residue calculus techniques [68]. In three-di-

mensional problems, in addition, integration in the proper

related sheet of the complex ky plane is involved. The

simple principle of extension into the radiation region is a

further fundamental advantage of the spectral-domain ap-

proach and allows rigorous treatment of complex MIC

problems.

For the general rules of evaluating SDA integrals of the

type (20) and a discussion of the physical background, a
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Fig. 4. Integration paths Cl in the SDA treatment of covered strip-type

MIC problems, energy leakage (a) neglected and (b) taken into account,
respectively.

covered transmission-line configuration such as that of Fig.

2(b) is considered. By introduction of the factor

1=
exp ( jC~JV) + exp ( – jckxw )

2COS( ckxw) 2COS(ckxw) ‘
c >1 (21)

the integrals in (20) can be split up into a sum of two

contributions for each of which the integration path CX can

be closed in the complex kX-plane at infinity [39], [41]. This

is shown in Fig. 4(a) for an analysis which does not include

energy leakage, and in Fig. 4(b) where this mechanism is

properly accounted for. In both cases, the zeros of the

auxiliary cosine function in (21) introduce additional, non-

physical poles onto the real kj-axis. According to the

relation (19) and neglecting material loss, the LSM and

LSE wave poles are located on the axes or not, depending

on whether the leakage mechanism is incorporated into the

solution (square of propagation constant ~~ complex) or

not (kf a real number). The quantity w is a suitable

normalization width. The positive real constant c is to

some degree arbitrary and can be utilized for numerical

check purposes and in convergence considerations. In-

tegrating along the real k:-axis across the single poles

artificially introduced by (21), Cauchy principal values are

taken [68].

If, in Fig. 4(a), a nonradiating mode would be consid-

ered, i.e., with a propagation constant larger than that of

the LSM radial wave, the LSMO pole would be located on

the imaginary k~-axis. In that case, the dominant contribu-

tions to the integrals in (20) would come from the discrete,

regular set of auxiliary pole,s, say kx~, on the real axis.

With the constant c in the factor (21) chosen sufficiently

large, the set of kx~ becomes very dense and the problem

could be described in-terms of this set alone. In the limit of

c ~ m, this is nothing else than numerical integration

along the real axis of the kX-plane. However, describing an

MIC problem under radiation conditions, as actually pre-

vailing with the pde locations of Fig. 4(a), this becomes

more complicated. Numerical integration along the k~-axis

and across the LSM ~-pole (Cauchy principle value) now

means introducing a discrete standing plane contribution

kxP into the electric-field distribution [61]. This is equiv-

alent to the presence of a lateral shielding far away from

the MIC configuration, reflecting the radiated LSMO-field.

The same type of result is achieved if one applies a

transverse resonance app~oach to covered structures under

operating conditions in the radiation region [57], [58].

The leaky character of higher order MIC transmission-

line modes, discontinuities, and junctions of the covered-

type are correctly described by the integration path shown

in Fig. 4(b). This can be concluded from an investigation

of the migration paths of the LSM and LSE wave poles in

a slightly lossy dielectric medium [41], [61]. Those physical

poles which in the lossless case of Fig. 4(a) are located on

the real axis (here only the LSMo-pole) are just below the

kj-axis for a small dielectric tangent different from zero.

They migrate across the real axis of the kX-plane if an

additional radiation mechanism is involved. Therefore, the

original integration path CX (the kj-axis) for nonradiating

situations has to be distorted in the way indicated in Fig.

4(b). Otherwise, solutions would not pass over continu-

ously into the radiation region of operation. As Pregla has

already pointed out in his early study [56], the transition

from one state of a solution to another, i.e., when the

LSMO-pole appears at the origin, does not present prob-

lems since the associated residues vanish then. The same

arguments and integration path discussed here are valid

also for the evaluation of integrals (scalar products) with

respect to the kY-variable in the SDA solution of three-

dimensional field problems. However, depending on, which

integration is performed first, additional branch cuts have

to be regarded either in the complex ky- or kX-plane. A

broad and thorough treatment of the spectral-domain ap-

proach for a variety of representative leaky MIC problems

has been elaborated in a recent dissertation by Boukamp

[41].

V. PROGRESS: 1975-1984

To round out the view given so far for the spectral-

domain approach, a review is given of the improvements of

the technique and the more important results achieved by

its application during the last ten years. Emphasis is placed

on frequency-dependent solutions since these become more

and more important with the development of practical

MIC’S in the millimeter-wave region. Many of the contri-

butions mentioned do not use the SDA in its pure form but

deviate from it in the one step or another of the analysis.

The reader may get an impression, therefore, that a high

degree of flexibility is inherent in the details of the SDA

formulation. The discussion is subdivided according to

three different groups of MIC structures, namely transmis-

sion lines, resonators and antennas, and, finally, discon-

tinuities.

Considering printed microwave and millimeter-wave

transmission lines first, there has been a clear tendency

since 1975 to treat this class of problems in a generalized

way, allowing additional dielectric layers and more com-

plicated strip and slot configurations [24], [26], [32], [34],

[35], [59], [60], [69] -[78], The inclusion of characteristic

impedance data becomes standard in computer analysis

programs, and also dielectric and conductor losses are

considered frequently [24], [26], [34], [59], [60], [69],

[72] -[78], [79] -[80]. This makes visible the beginning orien-

tation of the SDA towards direct application in the design
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of MIC’S. Together with this trend, computer time and

storage requirements for the analysis programs become a

more important point of view [80]. However, from an

appraisal of methods applied to the microstrip dispersion

problem published by Kuester and Chang in 1979 [81], it

can be concluded that the majority of respective computer

packages at that time still involved some problems. There

was significant progress, therefore, when not only the

number of applications of the SDA increased further, but

in addition some conceptual simplifications, modifications,

and basic numerical considerations were reported. As

elegant and simple concepts, for example, the transfer

matrix approach [32] and the very similar spectral-domain

immittance concept [35] have been presented, Also,

E1-Sherbiny [82], [83] provided interesting aspects to the

mathematical and physical background of the SDA and

applied a modified Wiener–Hopf technique in the final

step of solution. Some of the rules to be regarded in order

to obtain stable, accurate solutions and a unified treatment

of shielded, covered, and open strip and slot structures

have been reported by the author [34]. The introduction of

finite conductor thickness into the SDA formalism is mainly

the result of Kitazawa’s work [21]–[23], [84]. Its effect on

coplanar waveguide properties, for example, is an increase”

of guided wavelength and a decrease of characteristic im-

pedance, respectively.

With growing experience in the use of the SDA, applica-

tion of the technique shifted to more involved transmis-

sion-line problems. Coupled stfip-slot structures have been

studied by various authors with regard to coupler design

and an extension of the range of characteristic impedances

achievable in microstrip [22], [35], [47], [71], [77]. Also, an

increasing portion of SDA work on transmission-line struc-

tures with anisotropic media has been reported. Borburgh

[85], [86] seems to have been the first to apply the technique

to microstrip on a magnetized ferrife substrate and related

analyses followed [87], [88]. A variety of authors have

treated printed transmission lines in single- and double-

Iayered anisotropic dielectric media [89]–[92]. Only re-

cently, slow-wave MIS coplanar waveguide has been studied

with respect to MMIC application [93]. Beyond this, the

computation of the stopband properties of several periodic

structures by the spectral-domain approach has been. re-

ported [88], [94]–[96]. The last-mentioned reference also

contains some numerical results on Podell-type microstrip

couplers. As a further example for inhomogeneous struc-

tures, an analysis of tapered MIC transmission lines com-

bining the SDA for uniform lines with coupled-mode the-

ory has been presented [97]. Finally, a very efficient

hybrid-mode spectral-domain approach for conductor

arrays has been used by Jansen and Wiemer [98] in the

design of MIC interdigital couplers and lumped elements

on small computers.

Results achieved for resonators and antennas are consid-

ered together here since a large class of planar antennas

makes use of resonating open patch elements. The informa-

tion given on patch antennas, however, is by far incom-

plete, as the emphasis is placed on MIC’S in this paper. The

first full-wave analyses of resonators concentrated on

shielded structures and gave quite accurate results for the

resonance frequencies and current density distributions of

the open case if Q-factors were high and interaction with

the volume field in the chosen shielding box low [30], [31].

Taking this into account, Jansen studied microstrip reso-

nators of canonical and complicated shapes, with the latter

described by a polygonal contour in terms of high-order

finite-element polynomials for the current density [99].

Resonator shapes for which numerical results have been

generated are rectangle, circular disk and ring, concentric

coupled disk-ring and double-ring structure, stretched

hexagon, and regular octagon. This work has recently been

supplemented by Knorr [100] who analyzed a, shielded

short-circuited slotline resonator and by Sharma and Bhal

[101], [102] who provided shielded-type results for the

triangular shape and interacting rectangular microstrip

structures.

Already by 1978, Pregla [43] had investigated open reso-

nating microstrip rings including radiation using a Hankel

transform and formulating the problem in terms of com-

plex eigenfrequency. With increasing interest in microstrip

antennas, further related analyses of circular shapes were

perform-ed in the years following [44] -[46], [103] -[105].

Itoh and Menzel presented a full-wave SDA treatment of

open rectangular microstrip patches in 1981 [106] with

clear emphasis on antenna applications. There is also direct

antenna design work, for example, contributions by Bailey

and Deshpande [107], [108] and by Newman et al. [109],

which performs only part of the computational steps in the

spectral domain. Numerical integration along the real axes

in the spectral domain is the dominant choice in these

papers; however, singularities near the integration path

may cause problems (see, for example, Newman’s remarks

[109]). The first results for covered MIC geometries includ-

ing the excitation of LSM and LSE waves in the layered

circuit medium have been provided by Boukamp and

Jansen [40], [41], [61]. The main intention of this research

work was to study the mathematical and physical back-

ground and prepare the way for an extension of the SDA

in application to dynamic MIC coupling problems. One of

the practical results achieved in this context is, for exam-

ple, that lateral leakage in MIC’S can be minimized if the

circuit cover height is chosen slightly lower than a value

which would correspond to the onset of the first LSE

mode.
The same covered-type spectral-domain approach has

also been used to study the simplest case of a leaky

microstrip discontinuity problem, i.e., the open end, with

an excitation formulation [40], [41]. The motivation was

again to provide a basis for the analysis of more com-

plicated geometries. Interestingly, the numerical results in

comparison with a resonator formulation indicate that

there is a noticeable coupling effect between the open ends

of half-wavelength resonators, such as those used, for

example, in coupled line filters. The explanation is that, on

the alumina substrate investigated, the distance between

the respective open rnicrostrip ends is small compared to
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the wavelength of the involved LSMO-mode. Beyond this

very elementary but rigorous example, MIC discontinuities

have been computed using the SDA only for the static limit

[13] and by the frequency-dependent shielded-type SDA

implementation outlined in the foregoing section [36],

[62] -[67], [110]. Due to the three-dimensional electromag-

netic fields and relatively complicated geometries involved,

this sparsity of results prevails for other methods to an

even larger extent. Systematic and quite extensive design

data have been published for open-circuited-microstrip and

suspended substrate lines, as well as short-circuited slots

[36] and for the symmetrical and asymmetrical gap in

microstrip and suspended substrate lines [63], [65]. Also,

the inductive strip discontinuity in unilateral finlines, which

is the related slot-type structure, has been treated [64]. Very

recent work by Koster and Jansen provided a variety of

microstrip impedance step data for use in MIC design [67],

[110].

VI. EFFICIENCY CONSIDERATIONS

The spectral-domain approach is a hybrid technique in

the sense that it requires (and allows!) a certain amount of

analytical preprocessing in order to achieve high computa-

tional efficiency for a specific problem or class of prob-
lems. One of its main disadvantages is the relatively high

numerical expense which has to be spent to evaluate the

coefficients of the final system of equations (14). These are

improper integrals or infinite series with only moderate

rate of convergence. The order of the final system, on the

other hand, can be held extremely small compared to other

techniques. This is achieved, - for example, by regarding

several criteria in the choice of the expansion functions

[80]. Briefly summarizing, the set of expansion functions as

a whole should be twice continuously differentiable in the

interior of the region on which it is defined, so that it is in

the domain of the original Hehnholtz operator (l).

Mathematical arguments and numerical experience indi-

cate that this avoids the existence of spurious, nonphysical

solutions [80]. Further, expansion functions in MIC prob-

lems should satisfy the edge condition, i.e., have the correct

order of singularity y at the boundary of the conductor

metallization. This is a prerequisite to obtaining accurate

solutions with a low number of terms or, equivalently, with

a low order of the final system of equations. The set of

functions used should be complete in order to allow con-

vergence checks and investigation. It should be chosen with

all the physical insight that is available for the specific

problems, from static considerations, from idealizations

such as the planar magnetic-wall waveguide model [19] and

so on. The main rule is not to leave work to the computer

for the evaluation of what is known in advance of the

physical solution or can be obtained easier. This also

implies the precomputation of expansion functions by a

transmission-line SDA portion (two-dimensional fields) in

computer programs for the SDA solution of three-dimen-

sional field problems [36]. Finally, the use of static together
with stationary precomputed information. can provide a

means to generate vector expansion functions based on the

continuity equation. The analytical and programming ex-

pense required on the side of the investigator may be

considerable, which mirrors the hybrid character of the

SDA. However, in the way outlined, very efficient CAD

tools can be developed by its application.

To come to a quantification of the numerical expense

associated with the SDA, the number of point operati~ns

which have to be performed” in the solution of typical MIC

problems is estimated. Also, the possibilities of reducing

this figure shall be discussed. Let us assume a not too

elementary MIC transmission-line case, in parallel, a reso-

nator problem formulated in Cartesian coordinates. The

final system of SDA equations (14) is dense and has to be

generated repeatedly in the iterative localization of the

zeros of its determinant as a function of the eigenvalue

parameter p. Even with an intelligently chosen start value

of p, this has to be done about 10 times. Under the

assumption of a reasonable choice of expansion functions,

the number of point operations necessary to obtain the

numerical value of the final SDA determinant is usually

small compared to the expense investigated for its genera-

tion. This is a consequence of the fact that the number of

summations required to compute a single coefficient (in-

tegral or series) of (14) is typically much larger than the

order of the system matrix. The latter may be

Q= Z.. .lOand Q=4. ..100 (22)

for the transmission-line and resonator problem, respec-

tively.

For example, Q = 4 could apply to a simple, rectangular

half-wavelength microstrip resonator [14], [15], [36]. The

number of summations or discretization points to evaluate

each single scalar product may be 100..0500 for the

two-dimensional and 1002..05002 for the three-dimen-

sional case. In particular situations, this may be even

higher’ [34] depending on the spectral distribution of the

involved fields. The complexity of the immittance func-

tions encountered depends only on the number of dielectric

layers considered and may be characterized by a figure of

at least 10 . . . 100 point operations. On the whole, this

amounts to a total count of point operations of about

TC=2.104. . .25.106 and TC=8.10h ...12101010

(23)

for the two cases considered (symmetric SDA matrices).

This looks quite high, particularly for the very right-hand

side. However, one has to keep in mind that the spatial

resolution assumed there is equivalent to a mesh of 25”104

points in the plane of the MIC metallization. As a rough

estimate, the matrix order in a respective DDA treatment

would be Q = 5000, the matrix itself dense, and had to be

processed repeatedly about 10 times.

A reduction of numerical expense in SDA solutions is

achieved first by an optimization of the expansion func-

tions. This is performed according to the outlined criteria

and with some experience from a preliminary, crude ver-

sion. It- can be done w~th a relatively small amount of

reprogramming and produces a typical speedup factor of



1054 IEEETRANSACTIONSONMICROWAVETHEORYAND TECHNIQUES, VOL. MTT-33, NO. 10, OCTOBER 1985

5.--10 for nonelementary two- and three-dimensional

problems. Also, about a factor of 10 may be gained by

choosing an excitation formulation instead of solving an

eigenvalue problem which applies, however, only to the

three-dimensional case. The estimated speedup results since

the source formulation avoids repeated generation of the

final system (14). An additional reduction in computer

time can be obtained by splitting off asymptotic spectral

contributions from the coefficients of (14) and integrating

or summing up these by analytical techniques (a factor of

10). In eigenvalue problems, it is advisable to substitute the

spectral -immittances by accurate one-dimensional inter-

polants [36] and optimize CP-time at the cost of storage

requirements [31] for that part of the computation which

does not depend on the eigenvalue p (a factor of 10). SDA

computer programs developed for regular industrial use in

MIC design justify even more expense in analytical pre-

processing. For these, the normal mode of application is

the repeated solution of the same problem for several

different operating frequencies. Therefore, a high speedup

factor compared t~ the first solution can be achieved if tl&

is employed to provide for the subsequent ones a very

compact low-order set of expansion functions (tested by

the author for the transmission-line problem described in

[98]). Thus, average CP-time is further reduced by about a

factor of 5. By a combination of such-analytical measures,

the total count of point operations may be brought down

to

TC=2-.103 . . . 5.105 and TC=8.105. . .25.107 (24)

which is hardly achievable by other techniques. However,

great care has to be taken in properly designing the em-

ployed integration algorithms, i.e., choosing a correct spec-

tral representation. This particularly effects cases where

tight coupling is involved. For loose and multiple coupled

situations, a sufficiently stable matrix inversion algorithm

has to be chosen.

VII. CONCLUSION

The spectral-domain appr~ach allows an elegant and

closed-form integral equation formulation for a broad class

of MIC problems which is reduced by one dimension

compared to the original field problem. It results in a

particularly low-order linear system of equations and pro-

vides design-relevant parameters in both the spectral and

the space domain. In so far as it may require a consider-
able amount of analytical preprocessing to achieve highest

efficiency, it is a hybrid method. A preference of the SDA

for MIC problems is to some extent confirmed by the fact

that the majority of rigorous frequency-dependent MIC

design information has been generated using this tech-

nique. The survey presented here further confirms this

preference; however, the advice should be deduced from

the discussion not to apply the SDA in a crude and

schematic way.
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